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ABSTRACT

Conoidal cracks with elliptical bases within cubic crystals are investigated.
Under general loading (tension and shears), the crack is represented by a
continuous distribution of three dislocation families m (m= 1, 2 and 3).
Expressions for the elastic fields (displacement u™and stress (¢)™) of the crack
dislocations with elliptic forms are provided. Spatial dependences of the
dislocation distribution Dm at equilibrium, about the crack-tip, are obtained with
associated relative displacements ¢m of the faces of the crack. These lead to
analytical expressions for crack-tip stresses and crack extension force G per unit
length of the crack front. By using the word “twin” instead of “crack”, it is stressed
that this study applies entirely when abundant twinning is the mode of deformation
adopted by the loaded cubic material. For definiteness, is exemplified the observed
mechanical twinning in temperature regime 2 (773 to 1173K) in [112] copper
single crystals deformed at constant strain rates (stage V).

Keywords : fracture mechanics, linear elasticity, dislocations, crack extension
force, high temperature mechanical twinning.

RESUME

Fissure conoidale a base elliptique dans un cristal cubique sous
sollicitations extérieures arbitraires — I. Dislocation, contrainte en téte de
fissure et force d’extension de fissure

Des fissures conoidales a bases elliptiques a l'intérieur de cristaux cubiques sont
étudiées. Sous chargement général (traction et cisaillement), la fissure est représentée
par une distribution continue de trois familles de dislocations m (m = 1, 2 et 3). Des
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expressions pour les champs élastiques (déplacement u™ et contrainte (¢)™) des
dislocations de fissures de forme elliptique sont fournies. Les dépendances spatiales
des distributions de dislocation Dy a I'équilibre, au niveau du fond de fissure, sont
obtenues avec les déplacements relatifs ¢ associés des faces de la fissure. Celles-ci
conduisent a des expressions analytiques pour les contraintes aux extrémités de fissure
et la force d'extension de fissure G par unité de longueur du front de fissure. En
utilisant le mot "macle” au lieu de "fissure”, on souligne que cette étude s'applique
entiérement lorsqu'un maclage abondant est le mode de déformation adopté par le
matériau cubique chargé. Pour plus de précision, est illustré le maclage mécanique
observé dans le régime de température 2 (773 a 1173 K) dans des monocristaux de
cuivre d’axe [112] déformés a des vitesses de déformation constantes (stade V).

Mots-clés : mécanique de la rupture, élasticité linéaire, dislocation, force
d’extension de fissure, maclage mécanique a haute temperature.

I - INTRODUCTION

Recent works [1 - 3] have investigated rough conoidal cracks with average
circular bases under general loading in isotropic materials. The present study
focusses on smooth conoidal cracks (vertex O) with elliptical bases in cubic
crystals; the elliptic form of the bases is expected in anisotropic media. The
model is illustrated in Figure 1.

Figure 1 : Elliptical base (elevation X'2 = 00 = h) of the conoidal crack with
semiaxes p1 and p2 along X1 and X; .The running point Pp (1) along the base and

angular parameters 6y and ¢o that connect x; and XJ are illustrated. Angle 0 is
introduced by the relation tan 8 = OO/ p1. The medium suffers uniformly applied
tension o, in the vertical x, - direction and shears o5, and o, (parallel to the
horizontal xixs- plane) in the x1 and xs directions
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The medium is infinitely extended in the Ox;- directions (laboratory Cartesian
reference frame). The stresses are uniform, applied at infinity, with tension o,

and shears o,,and o, in the X2, x1 and xs directions, respectively. Induced

normal Poisson’s stresses —Vv,(]j)oy, along x1 (j = 1) and x3 (j = 3) are
considered. The crack nuclei are arbitrarily oriented with attached Cartesian
(O; X;); O X, is a symmetrical axis. In x,X, — planes, the bases are elliptical with

semiaxes p1 and p2 along xl' and x'3 such that ar = p1 / p2 = constant about any
elevation x, = 00’= h along O X, . The running position Pp ( X, X,, X, ) at the

elevation h along the base is written with respect to (O; X, ) as

X, = psing
OPo=|X,=h=ptanf |; x<p<x, 0<O<n/2;
X, = 0 COS ¢
P =l 1 (sin” g+ cos ). &)

The angle ¢ is between O’x; and O’Pp as shown in Figure 1. Angle @ is
measured in O X, X, between Pp (4= 7/2) O’ and Pp (6= /2) O where
Po (4= 7/2) has elevation x,=h from O X, X;; its alternate interior angle is

shown in Figure 1. Additional angular parameters 6y and ¢o (Euler’s angles)
are introduced that connect 7(]. to )”(J

e 6o (the angle of nutation) defined by unit vectors x, and X, , the growing
sense corresponds to the rotation around xs (the corkscrew rule applies),
e o (the proper rotation angle) defined by unit vectors x3 and X,, the

growing sense corresponds to the rotation around 7(2 :

The crack is represented by a continuous distribution of three dislocation
families with Burgers vectors bj=b Y(, , directed along positive Y(J , and running
point Pp (1) at the height X, = 00’= h along O X, (see Figure 1). Distribution

functions D; of the crack dislocations j are defined such that Dj (p1) dp:
represents the number of dislocations j in a small interval dp1 located at the

position X, = p1 on the O X, - axis (- a1 < X, = p1 < a1); Dj (p1)= Dj (- p1) by
symmetry, this restricts ourselves to positive xi values. The elastic fields in the
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fractured medium read as a superposition of those due to elliptical crack
dislocations. In Section 2 (Methodology), the procedures for determining the
elastic fields of the dislocations and crack analysis are explained. In Section 3,
are given the elastic fields (stress and displacement) of the elliptical
dislocations j, distribution functions D; of the crack dislocations and
corresponding relative displacement ¢; of the faces of the crack, crack-tip stress,
and crack extension force G per unit length of the crack front. Section 4 and 5
are devoted to discussion and conclusion, respectively.

Il - METHODOLOGY
11-1. Elastic fields of elliptical crack dislocations in cubic crystals

The three types j (j=1, 2 and 3) of crack dislocation considered have Burgers
vectors b, =(b,0,0), b, =(0,b,0) and b, =(0,0,b) along x'j; they spread in
the O'x,x; -plane in the form (1). We shall make use of the displacement T_(X)
, m=1, 2 and 3, and qu(i') due to a plastic distortion ﬁi}‘(i')given as a

periodic function of coordinates X = (x,, X,, X;)
B = By (K)e"” 2)

where k' = (k;,k;, k;) with k; arbitrary constants. Mura [4] has shown the
associated elastic fields to be

u, (X)= _ikI'Ck”j Lmkﬁj*ieil?.x' 1
T3a (%) = Coam (kn K Cui Lka; - B, )eik"i ,
o [Cu)C )

Lm _ mnrl 'sjnl : Itjrl — 3
" 2e,, (Chukik; )(Cyakik; )(Chakik;) ®)

Here forms like € correspond to the permutation unit tensor (all zero except

njh
the permutations of <,,, with respect to the indices, using 1 for even and -1 for

odd permutations). We stress that the so-called summation convention is used
throughout this work: if a subscript is repeated, summation from 1 to 3 is
implied.
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Cijkl = ﬂ“é‘ij5kl + ﬂé‘iké‘n + ﬂé‘né‘jk + :ulé‘ijkl (4)
where all &, =0 except &,,y; = 6,5, = 535, = 1 and

A=C,, wn=C,, wu=C,-C,-2C,. ()

d; in (4) is the Kronecker delta; the C; in (5) are the Voigt constants. The
constants C;,, are symmetrical as follows,

Cijkl = Cijlk = Cklij = Cjikl . (6)

The plastic distortions ;" , associated to the elliptical crack dislocations | (1=

1, 2 and 3) at the height 2= OO’ in the distribution (Figure 1), are expressed
successively at X = (X, X, X;) -

0 b3ty (W[ T —a |- H - —ait ). if=p

o0 o0 o

_ _bp, J‘ J,[7,] R @

(7)== k2 v akk?

17, = (p,/a )k +a’k? , Ji[nz] is the Bessel function of the first kind;
K =(k, Ky, k), %, = (%, % —h=Yy,,x), dk =dkdk,dk, and ¢ and H are the

£

Dirac delta and Heaviside step functions, respectively. ;" =0 for ‘x;‘ >p,.

The other components of the plastic distortion are zero. " (7) in its Fourier

form is a superposition of expressions of the form (2). Therefore, associated
displacement and stress are similar superpositions of (3), hence,

o0 00 00

urg)(xl) = __I _j _I ikllckllzLmkﬁz*l(l)e”zl'ivhdlzl,

O-fnl; (X)= _L _{O _-[Ocpqmn (kr'mk;ckllz Lo _2*1(1) - Bn*n(]l) )eiﬁl'ihdiz',

70 _ bpl ‘]1[772] (8)
@)k +akk?
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B9 are zero except B,". Performing the necessary integrations in (8)

nm
provide the elastic fields of the elliptical dislocations j=1 at the elevation h in
the conoidal crack dislocation distribution (Figure 1) in Cartesian coordinates

x'. We now consider the dislocation j= 2 with form (1) and Burgers vector

b, = (0,b,0) along X, . There are only two non-zero components ;. and S
of the plastic distortion.

ot o5

2

1*2(2) =bH (YZ
@) _ pH (yz)(é[x ratfpr—x? |-

o 0 o o
—00 —

—?ﬂ*(l) ik, xhdk = J. J. J.,B3*2(2)e|k thk (9)
Making use of (3) , we obtain

8'—-.8
8'—-8

(1)e'k Sk = _[ J.

8'—18
=~

k2 —00 —00 —00

0

(2 _ _ n*(2) 24(2) \ aik "X A
Un" = I L{O'kl mk( kI21ﬂ12 +Ckl23 32 )e "dk,

(2) '[O J;O '[Ocpqmn (knkl Lmk I:CkIZl _ZI.);(Z) +Ck|23ﬂ3 (2)] *(2))eiﬁll)‘(;1dlzl .
(10)

We consider the dislocation j= 3 with form (1) and Burgers vector 53 =(0,0,b)
along x, . For the plastic distortion, we have

29 —b(y,)H ([Xl #\lpf el | ol -an _Xll) - xl=p,
-l

) =0 for ‘Xé‘ > p, and the other components of the plastic distortion are

) B hdk B =B (11)

8'—;8
8'—.8

zero. (11) and (7) are identical although their Cartesian form is written
differently. Making use of (3), we obtain,
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3 " 33k % 4
ur(n) :_I ] III(lcklszl—mk 23( e *dk

(3) J. .[ j Cpqmn (kr‘1kI'CkI32 Lmk _2*3(3) - ﬂ_n*n(13) )e”z}‘(hdlZ (12)
At this stage, we can write down the various elastic fields displacements ‘"

and (o) associated with the three types j of crack dislocation with form (1).
Our calculation results are displayed in Section 3.

11-2. Crack analysis

We shall apply the traction-free condition at any position on the crack
boundary. This gives:

Gy — 50X, | OX — G p50%, 1 0%, =0
G yy — G, O%y | OX — G ps0OX, | OX, =0 (13)
Ggy — Gy 0%, | OX, — G py0%, | 0%, =0

&; stands for the total stress at any point P (X, X,,X;) in the medium and is
linked to the crack dislocation distribution D;. (13) concerns the positions on

the crack faces only. &

; 1s written as (relatively to x;)

(CX(

0 = 0 At oy Yy O'iﬁc)(z) + Uigc)(g) (14)

(o) is the externally applied stress including normal induced stresses from
Poisson effect; relatively to x'j , Its components are given in Appendix A.

O™ (%) = .fa,(”’)(x “p)D. (p)dp, (m=1,2and3) (15)

Here we assume that the crack extends from O to a; along positive values on
the O x, - axis. 0 Is the stress field at X' due to a conoidal crack dislocation
m with position x = p, along Ox, in the dislocation distribution. (13) give

three integral equations the resolution of which yields the Dm. The relative
displacements ¢m of the faces of the crack in the x_ - direction at the position
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Po (1) in the distribution are obtained by integration from the relation
dg, =—bD,(p)dp,

=fme(p')dp', 0<pi<arand0<g¢ <m. (16)
P1

From (14) to (15), one can obtain the crack-tip stresses. The crack extension
force G per unit length of the crack front is defined in previous works (see [1-
3, 5], for example). The presentations in [1, 3] best correspond to the present
study. The front of the crack (Figure 1) with shape (say Pp, (1) with p1 = a1)
is assumed to advance steadily from p1 = a1 (shorter crack) to p1 = a1 + da1
(lengthened crack). At an arbitrary position Pp (1) with a1 < p1 <ai1 + day, is

attached a surface element ds that reads

d51 g sing

— an

dS = dS - l ¢ gl 3/2 (¢) arzgl(¢) ’ (17)
ds, al cosg ),

0,(¢) =a,7sin’ ¢+ cos’ ¢

The component of the force acting ondsin the x —direction is ojjds; (the
summation convention on repeated subscripts applies) where oj; are stresses

ahead of the shorter or behind the lengthened crack; thus the energy change
associated withdsis &ds;Au® /2 (here a summation is also considered over

i=1, 2 and 3) where Au®is the difference in displacement across the
lengthened crack, just behind its tip, in the x —direction. When the crack

advances from p1 = a; t0 p1 = a1 + das, the energy decrease associated with a
surface element

a+oay .
As = I ds(P,) = oa,dgAs

PL=3

As=a, tanda’ ‘3’2(¢)\/sm pcos’ p(1—a’)’ +2a’g’(4) (18)

(0@, being small and, when used below, will be let to go to zero) is given as
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1 ay+oa

0B =3 j TXEdsAu, (19)

the integration being performed with respect to p1; we stress that As is the sum
of the surface elements ds taken at the various points Pp (1) as p1 only changes
from a, toa, +da,. The crack extension force G per unit length of the crack

front at Po = Pp (with p1 = a1, ¢ given) is defined as

G(R) = lim —5E/As. (20)
Il - RESULTS

Physical quantities concerned here are the spatial dependence of the crack
dislocation distributions D about the crack front, the crack-tip stresses &;; and
the crack extension force G per unit length of the crack front. These require
using the stress fields aig”‘) of those dislocations located at the very tip of the
crack front. Hence, are displayed first below stresses aiﬁ'“) to linear terms with

respect to (x, —h).
I11-1. Stresses o™ (X"; o) to linear terms with respect to (x, —h)

The dislocations m have elevation h in the distribution and semiaxes p1 and p2
(ar = p1/p2) along O x, and O x, , respectively, under the condition x, <h

from the crack-tip stress calculations below. Associated stresses are displayed
in Appendix B.

I11-2. Conoidal crack dislocation distributions Dn

The traction-free  conditions (13) are written for positions
Pc=(x, X%, =X tan@, x, =0) that correspond to OPp (4= #/2) (1); the crack

front is assumed located at x, =a, on the x,-axis. This reduces to
0, -0, tand=0

5, —G,tand=0. (21)
O, — 0y tanfd =0
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Only the spatial dependence of Dr, about the crack front is required in the crack
analysis. Hence, Pc will be moved closer to the crack-tip i.e. a1 - da1 < x, <a1

(0 < da1 < a1). o{”'™ when used in (21) is identified to

&
o™ (R.) = [of™ (Pe; %,)D, (%,)dX, (22)
X

where o™ is the stress at Pc due to a conoidal crack dislocation m with
position x, =X, (height x, =h =X tan&) along x, ; hence, a1 - da1 <X, <X, <
a1. Essentially, dislocation loops with X, < x, contribute nothing. Under such

conditions, (21) can be managed to provide three singular integral equations
with the simple Cauchy type

(277)2C11ar 1-6ay/ay ' 1-7,
1

(27)?C,y38, 1o 1-7,
1
bC44 (Cll + 4C12) J. dzl D3 (EL) — O , (23)
672'(:113.r 1-saylay 1- Z
K2 [a " —tan Oo 51] +K® [o'fz— tan 0o f‘l]

Term(2) +

:O’

Term(2) +

o's—tanbo s —

Term(1) = ,
Kis Kz + K K
Term(2) - KS|[oh—tanbo ', |-KS [ oh—tanbo, | y
erm( )_ K(Z)K(l) + K(Z)K(l) ! ( )
13 22 23 " M2
K$) =tan#(2C,(C,, +C,,) - (C{; +C,,C,y +2C2,)) ,
K =4[ Cf +C,,C,y +C,y (Cyy +Cyp) | +9tan’ 6C;,,
Kl(;) = 2C§4 ~tan” 9(2(C12C44 + C121) - C11 (Cl2 + C44)) J
K =tan 0(9C7, +4[ C,,(Cyy +C,) +Cp,Cyy +C2 ) (25)

(c)"is given in Appendix A . (23) are inverted in a similar way as in [3] to give

D, =y, ! ,  m=1,2and3, (26)
1-z
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z, =% /a,, (1—1z) positive infinitesimal value and oo a dimensionless constant

[3];
o, = 4alrTC“Term(l) ,

a, = 12abC11 Term(2) ,
o, =——2 [59_tanoos ]=- 2 uTerm(3). 27)
bC44 (Cll + 4012) b

(26) is the value of dislocation m distribution closer to the crack tip. The
associated relative displacement ¢m of the faces of the crack is,

¢, = 2baya,a,\1- 2, . (28)

I11-3. Crack-tip stresses

We assume the crack front to move from the elevation h(a:) = a; tan 6 to
h(ai+da1) = (a1+daz) tan  along x, (use Figure 1 for illustration) and consider

a position P (X, X,, ;) on the newly created crack boundary with x, = X, tan &
yar< x < ai+das. P is given by Pp (1) with p, = x1 The stress at P is identified to,

g A+Y
5y(P)=2 Iafm’(P %)D, (R)d% = 3 5" (29)

o™ are given in Section 3.1. For D (X, ) We use (26) with z: = X,/ (a1+dax).
Two types of integration with respect to X, are required in the calculation of
G; (P). These are:

&+
1™@= | %(x—h)Re(1,)D, (X)d

X

_ o, 4tan eaf\/a cos(y — ¢)(a, +da, — X, )¥?
Jo @) (14+V3) VI-a (8, + 58, X3
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2 +63
100)= [ %Re(Q)D, (X)X,
"

a0, 20 Ja, (a, + 52, — % )2

= , ; (30)
9, () (1+V®)i-5(a, + 53, - XV
5SS W =9) . (31)
9,(9)9,(w)

to be introduced in 5™ to list &; (P) in (29).

I11-4. Crack extension force

The procedure for calculating G (20), the crack extension force per unit length
of the crack front at Py, is outlined in Section 2. For 44 in (19), we use ¢i (28)
with z1 = X, / (a1 + da1). G(Po) is written in the form:

G(Po)= >. G"(m), n,m,i,j=1,2and3. (32)

n,m,i, j

n refer to the relative displacement ¢, of the faces of the crack in the x —

direction; m correspond to crack dislocation families; ij point out to the stress
component &;; .

wl2
2"aafa’C,, tan Osin gTerm(1)? dy siny cos(y —¢)
379y (#)A” g )N (LB

_ &) )
X[Z(CHCM + C121) S(:l/6 - Fllia) + 4C,,Cy, cos ‘//J ,

Gy ()=~

—=1/6

Jsc sC

wl2
Aaala’C, singTerm(l)Term(2) dy

A 2 g2 (p)WNai-6(1+Va)

6 (2)=-
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X(Sinz WF1(2) (a)+C,, cos ‘//F1(12) (b) F1(12) (c) _ Cp(C,+Cy) sin® y cos’ ‘//J
55/6 EUG ’%
G (3)=0;

7l2
G(l) (1) — 25 aiajafCMCngl (¢)Term(1)2 dl,V
N 37A 2 g3 (y)Narv1-a (14+4a
® M &
4ﬁi?g3$+&gq,
SC SC JSC
2'aaa] CMC“\/_ tan dTerm(1)Term(2)
A
7l2
o | dy—_Sinweosty —¢) [ FO@)  FE0) Y (C)J
-zl2 S/Z(I//)G)\/_(1+\/_) (—E Eﬂ J

A aata’C,C,g,Term(L)Term(3)

G, (2) =

Gy (@) =- o1
12
I dysin2y [ I:1(23) (a) + j .
,71'/2 g3/2 (W)\/_\/_(1+ \/_) 12 2 SC ’
GY (1) = 2"a,a2alC,,C,, tan 0 cos gTerm(L)>

37/g,A"
zl2
(0] 2
J‘ dy cosy cos(y — @) { Fs’ () +2C, scve 4C12_C(1)/i WJ’
—xl2 5/2 ((//)a)\/_(1+«/_) JSC SC

2°aala’C,,C,, cosgTerm(l)Term(2)

GY(2)=- -
,],2 dy sin 2y ( Pa), 2¢, Gy j
wm%wfV_XHfj c® 5 Jsc )
Gy (3)=0;
Gy (m) = % G3(m), m=1,2and 3;
GO @) = 2'alal C11\/_ ta2 dTerm(L)Term(2) j
70 )
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siny cos(y — @) (ZC (Cu+C )§1/G+F2‘21)(a) 4szcos z//j
11 44 12

o Vo (143 Jsc  sc”

2°aala Cllngerm(l)Term(Z) dy

A" 12 93/2(W)\/_\/_<1+\/_)

% ) (a) Cll(c44+C12) 2C123|n y cos®
%5/6 El/fi ’SC

G (2)=

G3(3)=0;
2°a,ata’C,,C,, cosgTerm()Term(2)

GE ()=~ —
7](2 d M
w sin 2y ( FP@) j
-zl2 g3/2 (l/l)\/_\/_(l+\/_) 5/6 51/6 !
GO (2) = 2'3a,a2a/C,,C,, tan @ cos gTerm(2)?
23 ﬂ_\/—:LA
2
« | dy —Coswcosly —¢) (Fg) (@ FP© , FY (b)J
- —=16
g p)avi-a(1+Ve ) JSC  sC
GO (3) = 2'3a,a2a’C,,C,, cos gTerm(2)Term(3)
23 7Z'A*
72
.| dy (F;f’ (8) , FY(0)  FY (C)J .
—7z/2 g3/2(W)\/_ , (1+\/_) S(31/6 ﬁ
GP (m) == tan¢G1(§)( m), m=1,2and 3;
1%
Gy (m) = _%0.0) G2 (m), m=1,2and 3;
o, COS ¢
GO @) = 2°a,aba/Cl tan @ cos gTerm(L)Term(3) J’ dy

T g A —l2
i _ _ @
siny cos(y — @) ( 2(C+Cu)3 cve Fs'(a) 4012 cos x//J |

X 5/2 (W)w\/_ (1+ \/_) \/E %1/6
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GO (2) = 2°3a,a;a’C,, cos gTerm(2)Term(3)
33 ( ) ﬂA*
7l2
« | dy (F;;) @, F2®)  FY (c)]
—xl2 g§/2 (W)\/E\/E(l'i' \/5) %5/6 §ﬂ5 E

G9(3)=0;
A" =/(1-a?)sin® 2¢+8a’ gl (9) (33)

Associated average < G > value can be defined as

zl2

<G >=% I d¢G(P,) =<G > (o,,6,,4,,a,tan 6,a,,C,.), (34)
T 0

ij?

being function of various mentioned parameters.

IV - DISCUSSION

The crack extension force G(Po) (33), per unit length of the crack front, at Po
invokes an integration with respect to angular variable . In k’ spaces involved
in the Fourier forms of the dislocation elastic fields (see (8), (10) and (12)), we
have used the relations k, = 51 siny and k, = 51 cosy. The integrations with
respect to #1 have provided functions like Re(Qi) and Re(l2) in stress
expressions (see Appendix B); remain those with respect to . Various factors
and terms in G(Po) contain v, so the integrations with respect to y appears
laborious and rather unnecessary because the physical parameters (aif, ai, 0,
ar and Cnm) are revealed in G(Po) (33). The average form < G > (34) of G(Po)
is function of various parameters: cubic elastic constants Cnm that measure the
elastic anisotropy of the medium; ar = a1 / a2 , the ratio of the semiaxes a; and

a2 along x, and x,, that is a measure of the departure from the isotropic

medium where ar = 1 in steady motion [1 - 3]; angle 6, evaluated at the height
h = ay tan 6, provides a knowledge of the lateral shape of the conoidal crack

during its growing; aif‘ the applied stress matrix with respect to the laboratory

reference frame Ox;; 6o and ¢o (Euler’s angles) provide the connexion between
Oxjand O X'j attached to the conoidal crack. Generally, three Euler’s angles are

needed. Here (Figure 1) only two (6o and ¢o) are used because xs is contained
in the plane O x, x, with normal x, . Consider a material that deforms under

P.N. B. ANONGBA



115 Rev. Ivoir. Sci. Technol., 43 (2024) 100 - 121

loading. The energy E of the system (potential energy of the loading
mechanism and the elastic energy of the medium) decreases during its
evolution. The material adopts the appropriate possible (depending on external
conditions of imposed stress, strain rate and temperature) deformation mode that
insures highest energy decrease. The description that follows apply to numerous
materials. We refer to copper [6 - 10]. Deformation modes observed are :

(1) Plastic deformation by perfect dislocations observable by transmission
electron microscopy (TEM). The microstructure after deformation consists of
dislocation walls parallel and perpendicular to active {111} slip planes. When
the temperature is sufficiently high, subboundaries are formed that closely
satisfy the Frank criterion (subboundary in equilibrium with no long-range
stress fields in the medium).

(2) Abundant mechanical twinning which results from the motion of imperfect
dislocations. This occurs above 773K at a well-defined applied stress level 7,

(thermally activated) which defines the beginning of stage V deformation. The
twinning develops at various points in the sample and occupies volumes of the
order of several mm?. It seems that this twinning results from the nucleation
and propagation of a nucleus that grows in a regular manner over large
distance; this may be described in a similar manner as for the crack presented
in Section 1(use Figure 1). We thus take up the idea of our predecessors ([5,
11], for example) who cover the boundary of the nucleus of a mechanical twin
by dislocations (see Fig. 6.35 in [11]). The loaded material develops twins to
decrease the energy E of the system in the same way as with cracks. Hence, the
present study also entirely applies to twin with the following modification:
() is to be replaced by (¢’)*F" in (14) and ()" (Appendix A) by () F" given
by

v (032 - U;;) sz - Glfzr 0
(o) A = o 51 - O-zfi O-zaz - O-zfg 0'53 - O—zf; (35)
fi fi
0 0 =0y —VA(3)(03 -0y

X
J.” is the friction stress opposing the motion of the twin dislocations in

the medium. Confrontations with experiments will form Part Il of this study
with attention to the activation of twins in stage V in [112] copper single
crystals deformed at constant strain rates in temperature regime 2 [6 - 8]. The
following twinning has been identified (see Fig. 87, page 140, in [6]) :

(i) K1 = 1) =xx, twinning plane

(i) 1 =[121]  the shear direction X,

(iii) K2 = (111)  second undeformed plane

where o,
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(iv) 72 = [121] intersection of the plane of shear (101) = x.x, and plane K

In Figure 1, we have

% =[241]/421, %,=[112]/\6, %, =[312]/\14,

0,=62°, ¢ =19°. (36)

V - CONCLUSION

The present study considers a conoidal crack of finite dimensions, inside an
infinitely extended elastic cubic material, in the form of a continuous
distribution of infinitesimal dislocations. The vertex O is taken as the origin of

an attached Cartesian system (O; x'j), Figure 1. O, is the symmetrical axis
and the bases are elliptical in x X, planes with semiaxes p1 and p2 (at elevation
X, = 00’) along

x, and x,, respectively. ar = p1 / p2 is a measure of the departure from isotropy

(ar =1). A laboratory reference frame (O; x;) is used to specify uniformly
applied stresses at infinity: tension o, and shears o;, and o, along x2, x; and

x3 directions, respectively. Under such conditions, the crack contains three
dislocation families m (m = 1, 2 and 3) with Burger’s vectors bm = b X .

Expressions for the elastic fields (displacement and stress) of the dislocations
are provided. Spatial forms about the crack-tip of the crack dislocation
distribution Dm, at equilibrium, are obtained with associated relative
displacement ¢m of the faces of the crack. These lead to analytical expressions
for crack-tip stresses and crack extension force G per unit length of the crack
front. By using “twin” instead of “crack”, it is stressed that this study also
applies entirely when macroscopic twinning is the mode of deformation
adopted by the loaded cubic material. For definiteness, is exemplified the
abundantly observed mechanical twinning in temperature regime 2 (773- 1173K)
in [112] copper single crystals, deformed at constant strain rates (stage V).
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APPENDIX A: APPLIED STRESSES (6°)" (Section 2.2)

0,1 =cos’ ¢, (cos’ Gyoh +sin” ooy, ) +sin” o
+sin 26, cos® g0}, +sin 24,sin,o,
o, =sin’ O,c;, —sin 20,c;, +cos’ G4
o4 =sin’ ¢, cos® §,07, +sin 26, sin® ¢o;; —sin 24, cos H,04,
+sin’ ¢ sin® G,c5, —Sin 24,5iN6,04, +CoS* h.o
oy, =sin 20, cos ¢ (o5, — o7y )/ 2+cos ¢, Cos 20,05,
—sin ¢, sin 6,04 +sin ¢, cos 6,04
0,5 =—sin 2, (cos’ G, +sin’ 6,00 — o4 ) 2—sin 243, in 20,0 2
+05 24}, (C0s 6,0y +5in G033
‘A H H A A A
o =—sin20;sing, (o3, — o} )/ 2+cos ¢, Cos oo,

—sin ¢, cos 26,0, —sin 6, cos ¢,o4, ;

v Doy op 0
(o) A= P o lop
0 oy —Va(3)o3, X
i

va(m) (m=1 and 3) is Poisson’s ratio in the direction Xm perpendicular to the
applied tension x..

APPENDIX B: CRACK DISLOCATION (m) STRESSES o\ (X" p,)
(Section 3.1)

7l2

oD% p) ==L | dy S _hyReql,)

2r 3(:11 72 [9,(w)

— 6
X[Z(CHCM + C121) SC v Fll (2) 4C12C11 €S ‘//J ,

\/E EI/G

SC =sin®y+cos® v, g,() =cos’ y+a?sin’y,
E®(a) =sin*wC,(C,, +C,) +cos*wC,,(C, +C,,) —2C’ sin*ycos’ v ;

zl2
- DA dWRQﬁmWWW%mWW@

O. = p—
T 78Cy, w2 \[g, (w) sc™®
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El/ﬁ ’SC
I:1(12) (@)= Fl(ll) (@, F1(12) ()= sin® w(CLC, + Cll) +c0s’ wCy,(Cy +C,)
E?(b) = 2sin* wC,, +cos’ w(C, +C,)—2C,sin’ wcos’  ;
13)()( ;o) =0;

F?(c) GGy + C,,)sin’y cos y/j

72

bp, dy _siny

71 (X
273C,, 12 V9 (v)

_ (€]
x{zcn(c:44+cu)s,c:”6 Fy,'(a) , 4C;; cos ‘”],

\/5 sc”*

Fy (a) = _(Sin4 w(C/, +C,,C,,) +cos* yC, (C,, +C,;) —2C,,C,, sin” y cos® ‘/’)

o (X5 p) = —h)Re(l,)

zl2
o0 - oo [ dwRe@) L F(@) , Cu(Cu+Cp) _2C5sin’ y cos wJ
—1/6 '
73Cy 212 \[g,(w) sC Jsc
F? (a) = C2(sin* y +cos’ ) —C,,C,, sin? w cos? y +C,,C,,SC;
o5 (X)) =0;

72

bp siny
O (g — 1 d
o3 (X' p) b 4 9. )

ve FS (a) | 4C;; cos 1//}

x[z(cll+c44)§ 2 >

(x; —h)Re(l,)

SC SC
Y (a) =—(2cos* yC,, +sin* w(C,, +C,,) —2C,, sin” wcos’ y ) ;

7l2
Jo_ bp [ dvRe@) [ () , FY (), Y (c)J
33 — — — )
73C, =2 Jg,(w) | s sc”  sC
F?(a) =C,,C, (sin* w +cos* ) —2C. sin® w cos® y +C,,C,, sin®
+C,,C,,sin*wcos’ w +C,,C,, cos® v +C/ sin* wcos’ v,
R (0) =C,,C,, +C,Cp, sin” y +Cf cos’ v,
F3(32) (c)=—C,(C,, +C)sin’wcos’ i ;
oD (X p)=0; (B.1)
zl2
Lo _Cubpy [ dvRe@Q) [ R, RP©  RY (b)J
12 JR—
Cub7 2 g, (y) N o

P.N. B. ANONGBA



Rev. Ivoir. Sci. Technol., 43 (2024) 100 - 121 120

Fl(Zl) (a) = 2(C11 sin” y cos® y — 2C,, sin* y cos® i -C, cos® (//) ,
Fl(zl) (b)= C44 sin’ 4 +C11 cos* W Fl(zl) (c)= 2(C44 sin v —-2C, cos? ‘//) ;

zl2

o@ (%5 p) =—Z8PA [ gy, Y pyRe(,)

C,67 -2 \/m
( RO@) , FY0)  FY (c)]
sc” s s )
R (a) = 2(C,y (sin* y +cos* y) —2C,, sin” y cos” y —C,, 5C),
FP(c)=2(C, —2C,cos’y), R (b)=C,,siny +C, cos'y;

zl2
C.bp, sin 2y FP@ C
(3 _ a4 /1 d Re 12 n 44 ’
i C,,67 -z12 v /gz(t//) (Ql)[ ——5l6 | ——U6

EY(a) =C,(sin*y +cos* ) —2C,, sin* ycos’ i ;
zl2

o c,b cos
O (R py) = — 2P [ g, SOV (0 ) Re(l,)

Cll O -2 ' g2 (l//)

() _ 2
X(Fﬂ @), ac, 50" + #Ci2 08 w}

,SC 51/6
F(a) =—(Cysin" w +Cy cos’ );
7l2 .
@ ——C44bpl d sin 2y F1(32) (a) 4 2C, _ Cp, J

Oy = 7 Re(Q)( — — 12 ||
P Cubr iz Jg,(w) L s sc” \sc

Fng) (a) = (C11 +C44)(Sin4 l//+COS4 l//) ;
oD p)=0;
7l2
C.b sin2 FEY@) C
of) =B | dy = Re (Ql)( = )+_“f,ej,

OB T C6r L Jo,0) o

SC
FS (@) = Cy(sin* w +cos® ) —2C,, sin? y cos® v ;

zl2

o C.bp cosy
(2) & — 24P
oz (Xip) C,67 _,!/2 VI o 9, )
X{ RO FP© R (b)]
sc”® Jsc sC

(x —h)Re(l,)
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F2@)=F2(@@), FP(b)=2(C,-2C,sin’y),

F?(c)=C,sin*w +C, cos* y;

7l2

s _Cubp [ 4, Re@) [FP@)  FPb) , B

= C,,67 -ni2 \/ ( =< ~5/6 —1/6 \/: )
1 9,(w) \ sC SC SC

F$(2) =2(C,, cos® (sin®  +cos* ) — 2C,, sin’ y cos* y —C,, SC),

RS (0)=2(Cyy c0s"y ~2C,sin"y). FfY(0)=F{(0); 8.2

3y,Q2
Re(Q) = (—zyT)m and  Re(l,)=- (—2 y;z )5/2 ’
y1 - yl —

where y, =21 [g,(¥) , 9,(w) =cos?y +a?sin’y and Q=sinyX +CcosyX,
ar

Q <y, for both,
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