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ABSTRACT

The rough conoidal crack is represented by a continuous distribution of
dislocations with infinitesimal Burgers vectors. This is a smooth cone on
average, and for definiteness, with a vertex O at the origin, vertical symmetrical
axis, horizontal circular basis with radius R = a at a height xo = h(a). Its surface
consists of profound striations running radially to the vertex. The rough
conoidal crack dislocation at the elevation x2 = h(R) (R < a) is obtained as the
intersection of a vertical cylinder of radius R (axis x2) and the rough crack. The
dislocation distribution consists of three families (m) (distribution function Dm;
m= 1, 2 and 3) with burgers vectors by directed along the positive Xm-

directions. The stresses are applied uniformly at infinity with tension o, along

x2 and shears o3, and o, along X1 and xs. Poisson’s normal stresses —vo,

(v is Poisson’s ratio) acting in the X1 and xs directions are incorporated into the
analysis. Plastic distortions associated with these dislocations are first given.
Expressions of the elastic fields (displacement and stress) are also provided.

Then distribution function D of circular horizontal dislocations (with the

identical Burgers vectors bm) covering the smooth conoidal crack are
considered and three singular integral equations that determine D are written

down. D =D”(g) depends on angle 8, complementary to the half angle at
the vertex of the cone. D” may be used to approximate Dm. The crack-tip

stresses have been given as functions of D . Explicit expressions of the rough
circular crack extension force Grc per unit length of the crack front are given
that are associated with D ( 6 = 0). Expressions <G¢ > of G& (crack
extension force) averaged over the length of the oscillatory crack-front are
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plotted for the special case of sinusoidal fronts. These plots reveal that the
rough circular cracks can expand under small shearing stresses. Agreements
are found with high cycle fatigue experiments.

Keywords : fracture mechanics, linear elasticity, crack propagation and
arrest, dislocations, crack extension force.

RESUME

Fissure conique rugueuse sous sollicitations extérieures arbitraires :
dislocation, contrainte en téte de fissure et force d’extension de fissure

La fissure conoidale rugueuse est représentée par une distribution continue de
dislocations avec des vecteurs de Burgers infinitésimaux. C'est un cdne lisse en
moyenne, et pour la précision, de sommet O a l'origine, d'axe de symétrie vertical, de
base circulaire horizontale de rayon R = a, a une hauteur x. = h(a). Sa surface est
constituée de stries profondes s'étendant radialement au vertex. La dislocation de
fissure conoidale rugueuse a I'élévation x.= h(R) (R< a) est obtenue comme
I'intersection d'un cylindre vertical de rayon R (axe x») et de la fissure rugueuse. La
distribution des dislocations est composée de trois familles (m) (fonction de
distribution Dm ; m =1, 2 et 3) avec des vecteurs burgers by dirigés dans le sens positif
des directions xm. Les contraintes sont appliquées uniformément a I'infini avec une

traction o, suivant x. et des cisaillements o, et 0, selon x; et xs. Les contraintes

normales de Poisson —vazaz (v est le rapport de Poisson) agissant dans les directions

X1 et x3 sont intégrées a I'analyse. Les distorsions plastiques associées a ces dislocations
sont d’abord données. Des expressions des champs élastiques (déplacement et

contrainte) sont également fournies. Ensuite, les fonctions de distribution Dr(no) de

dislocations horizontales circulaires (avec les mémes vecteurs de Burgers by) couvrant
la fissure conoidale lisse sont considérées et trois équations intégrales singuliéres qui

les déterminent sont écrites. D = D% (@) dépend de I'angle 6, complémentaire du
demi-angle au sommet du cone. Dr§$> peut étre utilisé pour approximer Dp. Les

contraintes en téte de fissure ont été données en fonction de D'” . Des expressions
explicites de la force d'extension de fissure circulaire rugueuse Gge, par unité de
longueur du front de fissure, sont données lesquelles sont associées & D' ( 6 = 0).
Les expressions < G\ > de G&) (force d'extension de fissure) moyennées sur la

longueur du front de fissure oscillatoire sont tracées pour le cas particulier des fronts
sinusoidaux. Ces tracés révelent que les fissures circulaires rugueuses peuvent se
dilater sous des contraintes de cisaillement faibles. Des accords sont trouves avec des
observations expérimentales en fatigue.

Mots-clés : mécanique de la rupture, élasticité linéaire, propagation et arrét
de fissure, dislocation, force d’extension de fissure.
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I - INTRODUCTION

A recent work [1] has shown what follows: assume an elliptical crack of centre
O, inside an infinitely extended isotropic elastic medium. The stresses are

applied uniformly at infinity with tension o3, along x2 and shears oj, and o,
along x1 and xs. The plane of the crack is tilted around Oxs by an angle 6. The
tension o, is in general out of the loop plane and provides positive values to

<G> the average crack extension force G per unit length of the crack front
(averaged over all the positions on the crack front). The shears when parallel
to the plane of the loop provide negative contributions. These suggest that an
elliptical crack is unable to expand in its own plane under a shearing stress that
lies in its plane. Shearing stresses provide positive values to <G> only when
they are inclined with respect to the plane of the crack loop. Under such
conditions, the planar elliptic crack is not the right configuration to dealt with
crack nucleation in brittle solids under applied mixed mode I+I11+I111 loading
(shearing stresses in the plane of the crack). We would have to start, from the
beginning of crack expansion analysis, with a non-planar crack loop whose
front should be locally of arbitrary shape. Consequently, it is more appropriate
to investigate the expansion of the rough circular crack of mean radius R whose
front lies on an edge-on cylinder (radius R and vertical axis). In other word, the
front &(P) (i. e. the vertical position of P with respect to the average crack front
plane) of the rough crack at an arbitrary position P, lies on a vertical cylinder,
and is expanded in the form of a Fourier series. By doing so the following crack
problem that we call “the rough conoidal crack under general loading” is the
subject of the present study. The rough conoidal crack is represented by a
continuous distribution of rough circular crack dislocations. The elastic fields
in the fractured medium read as a superposition of the elastic fields of the crack
dislocations. Figure 1 serves to illustrate the modelling. We consider an
infinitely extended isotropic elastic medium containing in its interior a rough
conoidal crack (vertex O, axis Oxz and height h(a)= atan &) whose basis is in
the form of a rough circular line (centre O’, average radius R = a) displaced
vertically from the origin O by xo= h(a). This rough crack is made of three
families j (j= 1, 2 and 3) of rough circular crack dislocations with Burgers
vectors b;j along x;. Figure 1 gives an illustration of a crack dislocation of
arbitrary shape & located at the elevation h= h(R) in the crack dislocation
distribution.
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Figure 1 : Schematic illustration of a rough conoidal crack dislocation
(Burgers vectors bj along x;, j= 1, 2 and 3) at the elevation h= h(R)
in the dislocation distribution of a rough conoidal crack with vertex

O, axis Oxz, average radius and height R =a and h(a) = atané.

In this geometry, applied loadings correspond to tension o, along
x2 and shears o, and oy, along x1 and xs; see text for details

The running point Pp along the dislocation is given with respect to (O, x;) by

X, =Rsing
OPo=|%,=f=Y A(R¢)+h(R)=&+h (1a)
X; = Rcos¢

assuming that A (R,4) =¢&, (R)sinx, |S|; here n is a positive integer, x, and

&n (small in magnitude) are wave number and amplitude depending on R. S=
Ré¢ is the curvilinear abscissa of Pc (vertical projection of Pp on x1x3); S >0 for

0<¢ <mand S <0 for -z < ¢ <0. We shall impose the condition sin x, |S|=0
for ¢ = 0 and = = that gives xn R = n positive integer. In this way, the series
form of ¢in OPp (1a) reads
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E=> & (R)sinn|g). (1b)

h(R)= R tan # and 0 < R < a. Only positions Pp with positive ¢ values are
illustrated (Figure 1). We have OO’ = h(R); Pc and P are the projections along
X2 of Pp on horizontal planes x2 = h(R) and x2 = 0; @ is the angle complementary
to the half angle at the vertex of average conoidal crack surface (0 <6 <z /2).

The medium is stressed uniformly at infinity with a tension o, in the vertical

X2~ direction and shears o;, and o, (parallel to the horizontal xixs- plane) in

the x1 and xs directions. Distribution functions D; of the crack dislocation j are
defined such that Dj(R)dR represents the number of dislocations j, in a small
interval dR location at the position x1= R on the Ox:- axis (-a < R < a); Dj(R)
= Dj(-R), by symmetry, this restricts ourselves to positive x; values. The elastic

fields (displacement G'? and stress (o)) of the dislocation j located at x;=

R and average elevation xo= h(R), in the rough conoidal crack dislocation
distribution, may be deduced from those due to a rough circular sinusoidal
dislocation located on average on Oxixs (h= 0) and defined by x2 = An (R, ¢) =

& (R)sinn|g| (identical Burgers vector b, ). For the later, the elastic fields at
X = (X, X,, X;) are (to linear term in &)

U’(i)(n)()—(') =GO 4 ghHa

(O.)(i)(n) (5(’) — (O.)(J')(O) + (O.)(J')An (2)

0 Pand ()P are of zero order corresponding to the fields due to a circular
dislocation with centre O at the origin, radius R in the horizontal Oxixs plane

with Burgers vector b, ; these are available in [1]; tP*and (o) are

oscillating parts involving &. When the dislocation exhibits shape (1), the
elastic fields take the forms

0D (%) =GP (x,, y,, %) + S TPH (g, y,,%,) = 00O 4G
(@) (%) =) (%Y%) + 2 ()7 (4, Y5, 56) = (@) P + ()P (3)

y, = X, —h. Elastic fields of rough conoidal crack dislocations (Figure 1) have

not been reported. We shall provide expressions for these using the method
called “Method of Fourier series or integrals” in review works by Mura [2, 3]:
the method consists in writing the plastic distortions associated with the
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dislocation in Fourier integral series forms. The displacement associated with
a single wave (i.e., simple sinusoidal) plastic distortion is available from [2, 3].
Those of the crack dislocations are derived by superposition. In Section 2
(Methodology), the procedures for determining the elastic fields of the
dislocations and crack analysis are explained. In Section 3, are listed the elastic
fields (stress and displacement) of the dislocations j, distribution functions D;
of crack dislocations, crack-tip stress, and crack extension force G per unit
length of the crack front. Section 4 and 5 are devoted to discussion of the results
and conclusion, respectively.

Il - METHODOLOGY

II-1. Plastic distortions and elastic fields of rough conoidal crack
dislocations

The three types j (j = 1, 2 and 3) of crack dislocation considered have Burgers
vectors b, = (b,0,0), b, =(0,b,0) and b, =(0,0,b) along x;; they spread on

vertical cylinders (axis Oxz, radii R with 0< R <« ) with running point Pp
coordinates given by (1) (Figure 1). We shall make use of the displacement

a,(x), m=1, 2 and 3, (see (5) below) due to a plastic distortion f;(X) given as
a periodic function of coordinates X = (x,,X,, X;)

B; = B; (K)e** 4

where k = (k, ,k,,k;) with k ; arbitrary constants. Mura [2, 3] has shown the
associated displacement component to be

T, (%) = ~ik Cyji L ", 5)
For isotropic material,

_ §km (ﬂ’+ Zlu)kz B kk km (j“_'_:u)

L 6

™ p(A+2u)k" ©
where k? =k +kZ +kZ and

Cklji = l5kl5ji +/u5kj5li +,U5ki5|j ) (7)
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&, being the Kronecker delta and 4 and [t are Lamé’s constants. The non-zero

plastic distortions gV associated with a rough circular dislocation j in Oxuxs
on average, centred at the origin with radius R and running point coordinates
xo= A, =&, (R)sinng (see (1) for the others) take the forms (at arbitrary

spatial position X =(x,,X,,X;))
@ bR?sin® ¢ B 3 -
2 R%sin® ¢+ (0A, / 0g)° 20, - A)Hlal-He])=
«(1) _ bRsin wph /a¢ 5()(2 _ Ah)(H [pl]_ [pz]) *(3)

* R%sin® ¢+ (0A, | 0g)°
1O =bH (x, - A) (5[ 2.]-5[ 2 ])

5 =bH (x, — ) (8] + JRE ¢ | -6 x, - R ) ®

where p, =X +R?=x2, p, =% —R*-x},0<g¢<zand R>0. sand H
are the Dirac delta function and Heaviside step function, respectively. To linear
terms with respect to A, and 0A, / 0¢, the plastic distortions of these crack
dislocations j read

s j sk 0 ke
:Brs“) ﬂ (i)(0) +,3 (J)Ph (9)

Here 8.0 corresponds to the circular dislocation j in Oxaxs with centre O and

radius R the elastic fields (0" and (o)) of which are available (see [1])
and used in (3) to provide the zero order terms with respect to &, in the elastic
fields of the rough conoidal crack dislocation j with shape (1). g% is the

complementary term with &, that is used with the help of (5) to provide G/
and (o) in (2) and (3). Their used Fourier forms are

DA _ bR

= X O i, m)
m,mg

00 00 00

<1 f K2 A KR13,, [K,RIe“*dK = £ (10)

—00 —00 —00
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*(1) _ - m, +m,
(n:m,,m;) = -8n[(~1) +1]£[(m1+m3—n)2—1][(m1+m3+n)2_1}

M, — M, =_ h® (n
[(ml m, _n) _ ][(ml_m3+n)2 _1:|J 16nb,;” (n;m;, ms) (11)

m; and mz are natural numbers taking positive and negative values,

dk = dk, dk,dk, , J, and J, are Bessel functions of the first kind with

arguments kiR and ksR, respectively.

WA, ibRé:nK'n - +My s Mg+ (1) £ 1q -
311 " _ng_w (_1)ml ! lb311 (n’ml’m3)

< | _fkiJnh[klR]JmS[kaR]e”z‘*dk £ON (12)
TRTRT® 1
bi® = gf(—pmrmr—q)| — e T ) gpe 13
[( ) ]((ml_'_ms)z_nz (ml—m3)2 _n2 * ( )
= 2 O )
x_[ f f Jnh[klR]Jms[k3R]eiR'*dIZ , (14)

. bR, .
o= Z (=D™i™bg (nm;, m,)

4(2z)° ) mm
x_J;o__[O_J;Jnh[klR]Jms[ksR]e”z'*dlz (15)
*(2) _ my my+mg+n my+mg+n (_l)m3
b2 (1+( b )[( b +1h ((mg—ml—n—l)(mfml—njtl)
3 (G N (="
(my—m +n-1)(m;—m +n+1) (my+m —n-1)(m;+m —n+1)
1
_(m3+ml+n—1)(m3+ml+n+1)J 10
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The associated elastic fields G”* and (o)?* have been obtained with the help

of (5). It is then possible to write down the elastic fields from (3) for the rough
conoidal crack dislocation at the elevation xo = h(R) in the rough crack
dislocation distribution as illustrated in Figure 1. The results are displayed in
Section 3.

11-2. Crack analysis

Our crack model (Figure 1) has been described earlier in Section 1. In addition
to the externally applied tension o, along x. and shears o, and o, along x

and xs, induced Poisson’s normal stresses —V,05, (va is Poisson’s ratio v SO

denoted to track the contributions of Poisson’s stress) acting in the x; and X3
directions are incorporated into the analysis. The traction-free boundary
condition at any spatial position of the fracture surface is required:

Gy, —Of 10X,y —Of 10%,5,5, =0
G,y —Of 10X,G,, —Of 10%;5,, =0 (17)
O,y —Of [0X,0; —Of 10X,05, =0

o, stands for the total stress at any point P (X, X,,X;) in the medium and is

linked to the rough crack dislocation distribution D;. (17) concerns the

positions on the crack faces only. &, is written as

(O 4 5O 4. (O (18)

— A
0 =05 T 0 i

()" is the externally applied stress including normal induced stresses from
Poisson effect,

—V,Os Oy 0
(0)"=| op O Oy (19)
0 O —VaOp
o™ (%) = [o{ (%R)D,(R)AR (M= 1,2and 3) (20)
0
o™ is the stress field at X due to a conoidal rough crack dislocation m with

position x, = R along xu in the distribution. (17) give three integral equations
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the resolution of which yields the Dm. The relative displacements ¢m of the
faces of the crack in the xm-direction at the position Pp (1a) in the distribution
are obtained by integration from the relation d¢_ A =-bD_(R)dR:

#,=[bD,(R)dR", O0<R<aand0<¢<x. (21)
R

Special cracks captured by the modelling are the conoidal smooth crack
(& = 0) and the rough conoidal crack with a sinusoidal front &=¢ sinn|g|

(n=1,2...). From (18) to (20), one can obtain the crack-tip stresses. The crack
extension force G per unit length of the crack front is defined in previous works
(see [1, 4 — 9], for example). The presentations in [1, 7] best correspond to the
present case. The front of the rough crack (Figure 1) with shape (say Pp, (1))
at (R, ¢) is assumed to advance quasi statically from (R= a, ¢) (shorter crack)
to (R= a+da, ¢) (lengthened crack). At an arbitrary position Pp (X, X,,X;) (1)

with a <R <a+da, is attached a surface element ds that reads

ds, R R o4

ds=| ds, |=dRdg R (22)
s, X0, 0%
Rop ° @R

The component of the force acting ondsin the x; —direction isaojds; (the
summation convention on repeated subscripts applies) where oj; are stresses
ahead of the shorter or behind the lengthened crack; thus the energy change
associated withdsis ods;au®’ /2 (here a summation is also considered over
i=1, 2 and 3) where Au®Mis the difference in displacement across the

lengthened crack, just behind its tip, in the x; — direction. When the crack advances
fromR =a toa+da, the energy decrease associated with a surface element

o a]‘a‘a ds(P,) = a5ad¢\/1+ (axz(po)/@R)Z +(6X2(P0)/68)2 (23)

R=a

(sabeing small and, when used below, will be let to go to zero) is given as
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a+da .
—8E=; [Z3 e ds;au, (24)
a'l

the integration being performed with respect to R; we stress that As is the sum
of the surface elements ds taken at the various points Pp (1) as R only changes
from a toa+da. The crack extension force per unit length of the crack front at
Po = Pp (with R=a, ¢ given) is defined as

G(PO):a!eilrEo —0E/As. (25)

Il - RESULTS
I11-1. Elastic fields of rough conoidal crack dislocations

Referring to (3), Section 2, we obtain

uPh (X)L b o
L0 S (o -1)| | 3=0){ o
u(R) == OX;
0? o ) 0 | o=

- o -Y; X0 }+4(1 V)bt (n;my, my = 0)6_)(3 B,"(m,,m, =0)
i @ (n- o’ 0 *(1)

+i2x, 0,7 (n;my, m; = 0) X%, 1-y, a B, (m, m, =0)

*(1) ’ 21—y — —— -
(m; m, m3)|: @a-v) 6X 5X12 Y, 8X25X12

mg=1

-3 i (—1)““3{

o2 B2 o° }

4@V B0 (n;my,my) | B;
3

;P (m,my) —i2x ;" (n;m;, m,)

O N1y, 2 g0 (m,m)
X,0%, 2ox, | M)

* 0 o2
b, (n;m,m, =0 — Yy, —
( h )|: V@XZ y28X22:|

u™ (%) _ < (_pym
Up(R) -2l 1)(

m =1

. 0
~2x,bi” (n; my, my =0)y, —

3

B® (m1' m; = O)

+3 2im -y b

mg=1

- 0 0?
b (n;m,my)| 2v — +
(n;m, )[ ox, Y, axj
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*(1) : a
_2Knb31 (n’ m,, ms)yz v

uPh(X) & :
e

m =1

B (m, ma)J ,

b, (n;m,, m, _O) {1+ Y, 8%}
3 2

+4(1—v)x bi® (n;m,, m, —O)‘ B"®(m,,m, =0)

3

. 0° 0 |o=
+2Knb31(.1) (n’ ml’ m3 = O)y|:1_ y2 £:| Bl(l) (ml’ mS ) O)}

+i 2| m3+l(_1)m3 {

mg=1

* a
O (nymy, mg)—[l+ Yoo~ }
3 2

+HA(1-v)r, 0P (n;my, m,)| B (my, m,) + 2x,05® (n;my, m,)

Loy, 2 Bomml ;@)
ox2 OX,

3., [k,RIe" x5 dk dk,

X T o alven g [k,R]
Bz(l)(ml:m3) — J I € m L1

—00 —00

1 1

1 N e—‘yz"h ik K
B]_( )(n’]l’ mS) = j J‘ 7 ‘]ml[klR]ng [kaR]el( 4%+ 3X3)dk1dk3’

—00 —00 L

*(1) *1)
B® = _j B, , nf =kZ+kZ, B =i % (used below) and
X

bRE,
16(27)°(1-v)

UM (R) & .
0 i0m |

0 m =1

U,(R) = (27)

x 0 0
bzil)(n; m;, m; = 0)57|:1+ Y, 87:|
3 2

B™® (my, m, =0) + 2x,b,Y (n;m, m, =0)

0° .
—|1-y,— |B®(m,m, =0
x 6X32 { Y, 8X2:| - (my, m, )}

o (n;my, m, )ax [1+ Y, 67}
3 2

+Avic b (n;my, m, —0)‘

+§: 2im3+1 (_1)m3 {

my=1

+Avic, i (n; my, my)|| B (my, my) + 21,5 (n; my, m,)
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o° 0 |~
fn g ]aem]

@A (5 3 i
Ue ) o5 (o™ —1)| o (i my, m, =O){(1+V) Oy, } 8
LR 4 s X0, | Ox
2% b;‘il)(n. m,m, =0)| v I 8 2 o | ;(1) (m;, m, =0)
| ax2 8X3

+3 2 (—1)“"3{

mg=1

i ) 0? )
byi” (n;m;, my)| @+v) —+,
OX, OX;0X, |OX,

B,® (m, ms)}] ,

. 0 o
oty n

OX, OX3
Mzi((_m —1)| |3 (n;m,, my =0) 8—2—2(1— ) i
UO(R) m =1 v 6)(3 2%

3
+Y, ——— 0 }+4(2 V)i, b (n;my, m, —0)7 B,” (m,, m, =0)

OX a 3
* 84 *
n™31 ALY 2 O Bs(l) (ml'm3 :0)
20A3
o " 52 0° 0°
+372i™ (1™ { [b:® (n;m —21-v) vy, — 2
g_:l D { ( 3){ X2 -=v) x5 Y2 axzax,f}

B;(l) (ml’ mS) + 4(1— V)K'nb;il) (n, m11 m3)

0’ o* ®
B:®(m ,m . 28
{ax yzazaxg} s (M 3)} (28)

uP" () = uO(R)[Z i™ {203 (n;m, = 0,m;) + Ab? (n; m, =0, my)}

42— V) b (nsm,, m,) -2
OX,

ms=1

2

xy, ———B"®(m, =0, m3)+Z( DWE[( Ve 1}|b*(1’(n;ml,m3:0)

OX%,0X, =]

62 * 1M
X|:—2(1—V)§+ Y, a—xf:| B (2)(m1, m3 = O)+ Zl

) my=1

(1= o
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- *(1) . a 62
x2ib,;” (n;m, my) | 2(L—v)—+,

2y, 2 [ )2 eimm)

+(=D™ Ab? (n;—m,, m,) + AB (n;my, my) |y,

3

ul?™ () = uO(R)( Z i™ {203 (n;m, =0,m,) + Ab? (n;m, =0,m,)}

mg=1

{(1— 2v -y, a%}a% B*®(m, =0,m,)+ rr;0';(—1)”‘1“% [1+ (—1)”“1*1}

xb, (n;m,, m, —0){1 2V — Yo g 0 }i

24
+i im3+l

my=1

B"®(m,, m, =0)

{1—2v— Y, a%HZ(—l)% (L+(-D™) 30 (n; m, ms)—

=i 2(1+ (=)™ )5 (ns my, my) + ()™ A (n; —my, my)

B*(Z)(mll m3)§] )

. 0
LA (n:m,, mS)]ga}

u@A (%) S ms “2) fon. o 5
ERORE n;_lu 2(1—v) {2037 (n; m, =0, m,) + Ab (n,m1=0,m3)}a_xz

Y, {207 (n;m, =0,m,) + Ab (n;m, =0, m3)} 7 B ®(m, =0,m,)

3

2

+Z< 1)"‘”@ (D™ ~Dib (m; m, m, = 0)y, =~ B (m,, m, = 0)

OX,0X,
+Zim3 20-v) {2(1+ (D™ )b (m; m,, my) + (~1)™ A (n; -m,, m,)

+Ab (n;m;, m )} Y, {(1 (=)™ ) 2i(=D™ by (n;m;, m,) axi;s

+[(1+(—1)“)2b§§2><n;rm,rrg>+<—1)"mt£§”<n;—nu,m3>

+Ab§§2’(n;ml,m3)Ja—22} B*“)(ml,ms)%: (29)
OX3

b7 (n; my, m,) — b (n; my, —m,) = ~ABY? (n; m,, my). (30)
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o 2 8u(”‘”\1
|(| = 1 g ([é‘.l(l V)+V(5|2+5|3)]
au(m)An au(m)An
[5,2(1 V)+V(5|1+5|3)] ox [5i3(l_V)+V(§i1+5 )] ]
2 X
ou™a oulm J
(m)Aw i j . .
=u + N ECE (31)
[ OX; oX

I11-2. Conoidal crack dislocation distributions

Assume first that the crack (Figure 1) is smooth (¢ = 0) and write the traction-
free boundary condition (17) for positions Pc (x1 = R, xo =f = R tané, x3 = 0)
with xs= 0. Hence in (17), of /ox, =tan@, of /Ox, =x,tand/R=0and0 <R

< a. Denoting the associated dislocation distributions by D,
ol +tanOv,ol, +_[ (o9 (P %)~ tan 665 (P.; %) ) DO (%, )dX,

+[ (o8 (Rei%) ~tan 0o (R.: %)) D (%)%, = 0,
0

o5, +1an oy, +J‘ 0'(1)(0) (P.;X)—tan 055 (P; E)) DO (x)dx,

a

+ (05 (P %) ~ tan 6o (R; %)) DI (%,)dX, =0,

0

o5+ [ (5 (P %) —tan 655 (R %) ) DI (X )lx, = 0. (32)
0

Stress terms in (32) are given in Appendix A. Relations (32) consist of three
singular integral equations the resolution of which provides the D that
depend on @ (see Figure 1 for ). DY’ may be used to approximate D as given

by (17). Similar approximations have been used in previous works [5 — 9] to
provide expressions for the crack extension force G when the crack fronts run
indefinitely along the xs- direction and spread in the plane perpendicular to the
x1 fracture propagation direction. For = 0, D® (9= 0) correspond to the
circular crack dislocation distributions that are available from [1] and will be
used in the following.
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I11-3. Crack-tip stresses

The crack-tip stresses are required for the calculation of the crack extension
force G (see Section 2). At an arbitrary position P(R, ¢) (given by (1) with R
between R= a (shorter crack) and R= a + da (lengthened crack), da << a) the
crack-tip stresses separate into non-oscillatory and oscillatory terms as in (3).
The formers are identified to the following formulae

a+da

—(0)(|:)) Z J’ Ul(m)@) :%,)D,, (X)dX, = i_ 5MO®  (m=1,2and3) (33a)

in a similar way as in [1]; the oscillatory parts are given by

a

G (P)=L 2 [ ol (Pi%)D, (%)X (33h)

a-da

3 3
with following notations &5 (P) =X X 6\"* =26, = X 5\™ . These stress
n m=1 n m=1

expressions mean that only those crack dislocations located about the crack
front will contribute significantly to the stress at P; any other contribution

becomes negligible for a sufficiently small value of 5a. o{™® (P; %) is the non-

oscillatory part of the stress at P due to a crack dislocation at an average
elevation h =x tané@ (refer to Figure 1); this corresponds to the stress of a

circular dislocation. aigm)‘\” (P; X)) is the oscillatory part of the stress at P due to
a rough conoidal crack dislocation with form A (X,,#) (refer to 1a) at an average

elevation h . Dy is obtained from (17); D (32) may be used instead, writing

a+oa

5 (P) - j S (PRDP(R), = o™ (Pia) | DO(R)%.  (34)

a-oa a-oda

oa (<< a) is small and will be made to go to zero in the calculation of the crack
extension force. o™ (P;%,) and o{™" (P;%,) are given in Appendix B.
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111-4. Crack extension force for the rough circular crack (¢ = 0)

The crack extension force G (per unit length of the crack front) at an arbitrary
position Po on the crack front is given by (25). For Au® (24), we use (21) in
which Dm(0) is approximated by D (@) solution of the singular integral
equations (32). In the present work, G using D” (8 =0) is provided. Hence,

this corresponds to a circular rough crack with average radius R= a in the
Oxuxs- plane. It is shown that only the non-oscillatory parts of the crack-tip

stresses 55"’ (33a) contribute non-zero values to G. The oscillatory terms (33b)

contribute nothing because they don’t contain the appropriate singularity (of
the Cauchy type in the crack dislocation stress fields) closer to the crack-tip.
The rough circular crack extension force per unit length of the crack front shall
be denoted Grc(Po) at Po = Pp (1) with h(a) = 0 and R= a. We provide an

associated normalized quantity GRC (R,) defined as

éRc (Po) = GRC(PO)/GC(ZI) )
2
GO =8%°In[§jes ; (35)
/4 a

Gl =K @-v?)I/E, K? =c%+far . The quantity in the logarithm is
dimensionless, hence @ is introduced with this respect; E is Young’s modulus.
G is taken from [1] and represents a value of the crack extension force for
the circular crack (centre O, radius a) in Oxix3 under applied mode I loading.
ao is a constant (see [1]). We write (M,, =03,/ 05,, M, =05103,)

3
GRC(PO ):Z(él(})(m +Gz(?(0) +G3(?(°)); (36a)
j=1
. 2In2-1)M . . E@,B) (e
G(l)(o’z(—12 2(1-2v)sin? pW."(a, BW."(a,
5 = e D (( v)sin® g W (a,¢) + =2 {60 (a, )

x[—sin #(—4cos’ g)M_, +cos p(1—4sin® g)M,, / (1—1/)]

~LN; (a,¢)[ sin #(3-cos’ $)M,, +cos #(2v +sin’ g)M,; / (1—1/)]}) ,
oo __(2IN2-DM,,

N 4In(a/ @) (V_V(a, ¢)[(1_VC052 )M, +vsin2¢M , /(2(1_‘/))}

+(£(a g)/a)(1-v)singLN(a,4)),
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é(l)(o) _(2|n 2—1)M12

15 = W((l—Zv)sin2¢Wz(a,¢)+ {6W; (a,¢)

x| cos g(cos’ ¢—3sin® g)M,, +sin g(sin® p—3cos’ PIM,; / (1-v) |

s(a¢)
a

-~ LN;(a,¢)[cos¢(1—v +sin® g)M,, +sin g(L—v +cos’ p)M,, / (1—v)]}) :

<o (2IN2-1) . , _
GO :_W(wl (a,4)[ (1-vcos® )My, +vsin 24M,, 1 (2(1-v)) |

+(&(a,9)/a)L-v)singLN; (a,4))

8In(a/a) a 1-,
G“‘(g)(o) — (2 In 2—1)
2 4In(ala)

(w;(a,¢)[vsin 2¢M,, 1 2+ (1-v +vcos’ )My, / (1-v) |

+(&(a,4)/ @) (1-v)cosgLN; (a,4)),

2@ (2IN2-1)M, _ : * $(a9) *
G _(1_V)8|n(a/§)((1 20)sin24W; (@) + = {6W,"(a, 9)

><[cos¢(cos2 $—3sin® g)M,, +sin ¢(sin® g—3cos’ g)M,, / (1—v)]

~LN; (a,4)[ cos (1—v +sin” )My, +sin g(L-v +cos’ )M, / @ -v) ]},

— — 2
G =~ (2n2 LM, [W {vsin2¢—M12+[l+Vcos ¢JM13}
2

(@-v)4In(a/a)

+@(1—v) cos¢mj ,

G"’(3)(0) _ (Zln 2_1)M13
33 - —
(@-v)8In(a/a)

x| sin g(sin® ¢ —3cos® g)M,, +cos #(3sin” g —cos* g)M,; / (1-v) |

(2(1— 2v)cos? pW; (a, ¢) + = (aa’ %) (6w; (a,¢)

—LN;(a,¢) [sin #(2v +cos” p)M,, +cos@(3—sin’ g)M , / (1—v)]}) ; (36b)

cos ¢(1+sgn(sin ¢) ) —sin ¢ (1—sgn(cos ¢))

JL+(0&(@a @)/ R) +(0&(a,g) 1S )’

In5{(L+cosg)(L—sing)} / {(L—cosg)(L+sin @)}
JL+(0&(@a @) | R) +(0&(a,g) 1 6S)’

W(a,¢) =

LN(a,¢) =
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W, (@,4) = (Sln¢a§ (a,4)+ °°as¢aj( ¢)jW(a 9.

LN; (a,¢) = (sin¢—§(a, 9 +ﬂ%(a, ¢)jm(a, 9,

W, (@,4) = [ cos g == % (ag)+ S'”Mj(a ¢)jW(a 9.

. 0 sing o
LN; (a.¢) = ( sz @)+ ¢)jLN(a 9. (36¢)
To graphical plots of GRC (PR,) (36), the special case of a sinusoidal crack front
(use (1) for running point Po= Pp with R=a and h(a)= 0) with

Sag) =A@ g) =& @sinnlg,  |g<x, @37)
is analysed. ¢c, the crack-front inclination angle, is used with the following
meaning: ¢c is the acute angle, at crack-front positions Py located on the

average crack plane, between the crack-front and the average fracture plane.
Hence, for given R

tang, =22 (R ¢)—%Z§—E§(R)nsgn¢cosn¢

Since An(R, ¢) = 0 at Pm and tan ¢c positive, these lead to

n
tan ¢C = Eé:n (R) .
At any position with arbitrary R
R .
A1(R,¢):Ftan d.sinnlg|. (38)

We then write (37) as
£(a.g)= A (a9)="tang;sinnlg|. (39)

Under such conditions, the following average values for GRC (36) now denoted
<G > for the sinusoidal crack-front are evaluated:
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5 1 T 1 2 .
<G >=5—[GR(R)g=" [ G (R)ds. (40)

- -rl2

<G > then depends on various parameters (¢c; M1z, Miz; n, a/a; v).
Extrema with respect to ¢c may also be measured using the relation

0 ~
% < G,gsc) >=0. (41)

C

Figure 2 (a, b and c) show plots of <G§fg > (40) as a function of the couple
(¢c, Mq3) for different values of the other parameters. No coloured regions of
(éc, Mis) correspond to negative <G> (< 0); the associated crack
configurations are not favoured. The coloured regions correspond to positive
<G§fg > indicating that the associated rough cracks can expand. (b)

corresponds to (a) viewed in M3z magnitudes close to zero. Because
M2 = 0.001 is small, it becomes apparent that rough sinusoidal circular cracks
can expand under nearly pure applied tension for any ¢c. When M1z increases
from zero, the non-planar crack motion becomes impossible except for large
¢c (say larger than 65°, approximately, in Figure 2 a and b). Similar
behaviours are present for larger n= 10 in Figure 2c. Hence applied shearing
stresses have the property of impeding the expansion of rough circular cracks.
These latter cracks are mostly created under low shearing stresses.

-~ . M,=0001 ala=l5
s =T T p=l v=13
1
T 0.5
0
0 05
5 . -
4 b= A 80 1
— 60
M > 3 e g—— 40
13 1 @ 20 ¢C (deg)
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Figure 2 (a, b and c) : Plots of the reduced crack extension force <G%) >

(40) for the rough circular sinusoidal crack as a function of the pair
of variables (4c, M13) for different values of the other parameters
M2, n,vand a/a. (b) corresponds to (a) viewed in magnitudes of
M3 closer to zero. (c) corresponds to a larger n= 10 value.

IV - DISCUSSION

A modelling of the rough conoidal crack (Figure 1) is presented that consists
in representing the crack by a continuous distribution of dislocations with
infinitesimal Burgers vectors b. The running position Pp along the dislocations
is described by (1 a and b). Their elastic fields are given to linear terms with
respect to the oscillations A or their spatial derivative 0A, /0S along the crack

front (Section 3.1). The crack dislocation distributions Dm(6) provided by the
traction-free crack face condition (17) are required to give explicit expressions
of the crack-tip stresses and crack extension force. Dm(6) is approximated by
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D (6) due to the smooth conoidal crack. The later are solutions of (32). The

crack-tip stresses (34) are written as a function of D (¢) which remain to be

determined at present. In the present work, to proceed further, we use
D@ (6= 0) [1] to calculate the crack extension force (36) for the rough circular

cracks (Section 3.4). For plots, the special case of a sinusoidal crack front (37)
is adopted involving the crack-front inclination angle ¢c (38, 39). Similar ¢c
have been used in earlier works [5, 8] where the non-planar crack front is also
sinusoidal; in these works, applied M13 have been found under which average
crack extension force < G > plotted as a function of ¢c exhibit positive maxima

(see [5] and Figure 5 there, for example). The graphical representations of Géfc’

(40) reveal that these types of non-planar closed crack loop can expand at small
shearing stresses for all ¢c. With increasing M1z and Mz, their motions are
unfavoured expect for large ¢c (> 65°, approximately). Characteristics that
derive from Figure 2, D (9 = 0), are expected to prevail for the general rough

conoidal crack (8 =0), after inspection of the mathematics involved. On the
experimental side, fracture surfaces of fatigued high strength steels in long-life
regimes generally exhibit conoidal rough cracks, at the beginning of fracture
initiation. These cracks have been named “fish-eyes” [10, 11].

The vertex of the conoidal rough crack is generally occupied by
heterogeneities. An example of such fractured surface is displayed in Figure 3
taken from [11]. Figure 3a shows a complete broken part of the cylindrical
specimen in which the fish-eye is distinctly observed on the right of the
micrograph and in Figure 3b, its magnification. The vertex of the fish-eye is
occupied by an AIN inclusion. Fracture develops first the rough conoidal crack
over a diameter of 1mm approximately and further expands on a plane
perpendicular to the loading axis. In the experiments by [11], no shearing
stresses are applied. This agrees with the conclusion that the rough circular
crack can be created under vanishing applied shearing stresses (Figure 2). Very
similar fracture surface characteristics are present on SEM fractographic
images of René 88DT specimens tested in fatigue at 650° C [12] : in their
Figure 2(c) fracture produces, in order, a conoidal rough crack, a planar crack
perpendicular to the tensile axis and lastly another planar surface that deviates
notably from the preceding. We have shown [1] that, in addition to planar
cracks perpendicular to the tensile axis, there exists planar fracture surfaces
deviating from the formers by about 52°. From the experimental point of view,
it is then possible to perform quantitative analyses of this mode of fatigue
failure by linking the applied stresses to the number of cycles. This may be
done empirically, first.
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Figure 3 : (a) Fracture surface of broken high strength steel specimen tested
in fatigue at 20°C with the formation of a rough conoidal crack
with an AIN inclusion located at its vertex. (b) Magnification of the
conoidal crack (fish-eye). Micrographs are taken from [11]

V - CONCLUSION

A way to analyse mathematically the rough conoidal crack under general
loading is introduced. This consists in representing the complex crack by a
continuous distribution of Volterra dislocations with infinitesimal Burgers
vectors. This is a smooth cone on average, and for definiteness, with a vertex
O at the origin, vertical symmetrical axis, horizontal circular basis at an
elevation xo= h(a) with radius R= a. Its surface consists of profound striations
running radially to the vertex. The rough conoidal crack dislocation at the
elevation xo= h(R) (R< a) is obtained as the intersection of a vertical cylinder
of radius R (axis x2) and the rough crack. The dislocation distribution consists
of three families (m) (distribution function Dm; m= 1, 2 and 3) with burgers
vectors bm directed along the positive xm- directions. The stresses are applied

uniformly at infinity with tension o, along x and shears o, and o, along

x1 and xs. Poisson’s normal stresses —vo,, (Vv is Poisson’s ratio) acting in the

X1 and xsz directions are incorporated into the analysis. Plastic distortions
associated with these dislocations are first given and corresponding expressions
of the associated elastic fields (displacement and stress) are also provided

(Section 3.1). Then distribution function D of circular horizontal

dislocations (with the identical Burgers vectors bm) covering the smooth
conoidal crack are considered and three singular integral equations that
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determine D are written down (Section 3.2). D =D (g) depends on

angle 6, complementary to the half angle at the vertex of the cone. D” may be
used to approximate Dm. The crack-tip stresses have been given as functions of
D . Explicit expressions of the rough circular crack extension force Gre per
unit length of the crack front are given that are associated with D'® ( 6=0).

Expressions <G$) > of G (crack extension force) averaged over the length

of the oscillatory crack-front are plotted for the special case of sinusoidal
fronts. These plots reveal that the rough circular cracks can expand under small
shearing stresses. Agreements are found with long-life fatigue experiments in
high strength materials.
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APPENDIX A : STRESS TERMS IN (32) (SECTION 3.2)
Under x, = X, we have

o0

B

o) (P; %) - tan o) (P.; %) =C, _Le“a“‘”l‘xl’71J1[Y1771]e"‘1x1dk1dk3

2

x(v—1+l{tan 0|x — % |k? —i2tan &sgn(x, — %)k,
n

1

i

+l[i tan? O(x, — X, )k? —ka]}) ,

@0 (P %) —tan 062 (P; %) = C,x, | [ 2] g g

oo T
x((]_—v) H [)(1 _ Yi] |k1 + e—tang‘xl’xl‘ﬂl {(1—V) Sgn( Xl _ Yl)lki
+tan® 0|x, —%| (k +2vk7) /[2(1-2v)]-(1—2v)tan Ok’ / (2771)}) ;
OO (P.; %) —tan G PO (P.; %) = cl% f f e A g (%, Je™ dk,dk,

—00 —00

k? | v
xtan @ 1—v+(x1—E)ikl+—1{——tan9|xl—71|} ,
.

1 1

o0 Ri%) -~ tan ol (7 %) =Cr, | [ Aot
1
x((v—Dtan6H [x, — X, Jik, — e ™A (1 v) tan @sgn(x, — X, )ik,

+771[(1—2v)2 +tan o|x, —X1|771]/[2(1_ 21/)]}) :
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590 (P1%) ~tan Go O (P %) = C, 2 | | e mssin %ei“dkldkg
—00 —00 i

N

x[(v—l) tan @sgn(x, — X,)ik, +tan 8|x, — X |k} — 7,

+ﬁ[vkl +tan® O(x, —xl)iksz]j;
A

C,=ub/27z@Q-v), W is the shear modulus and H the Heaviside step function.

APPENDIX B : STRESSES FOR THE CRACK-TIP

o™ (P;%) (34) are listed below; these are written to linear terms with
respect to ( x, —h ), small quantity different from zero (x, —h = 0)

72

Ufi)(O)(P;Yi) Clilz[_sgn(XZ ~h)2 -(l; siny Ldy

7l2
+(x, —h) I siny (2+sin? W)M;dw} ,
0

zl2
Ug)(o)(P;E) = _ lKl()(2 —H)Z _!- sin l//M;dl//,
72

o (P;X,) C&Z[—szgn(xz—ﬁ) !sin yLdy
zl2
+(x, —h) ,[ siny/[1+2vsin2y/]M;dy/],
0
72

DO (p:g) = Clyiz[_ ! (1—v+vsin2 y/) M, dy

7l2
+‘X2 — ﬁ‘ ,([ [1—v+ (1+v)sin? l//] LZdy/} :
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72

o (P;%) = 0&2{—(1—V)Sgn(xz -h) { cosy Lydy
zl2
+(x,—h) J cosz//[l—v+sin2w]M;de,
0
zl2 72
Gg)(O)(p;Yi):Cli{v ! sin Zy/Mfdy/+(1—v)‘x2—ﬁ‘ ! sin ZWL’;dy/];
1-2v

wl2
PO P:x) = _20_1)(1[_(1_21/)2 { siny M, dy

7l2
+2|x, - l [v+(1v)(12v)sin2y/]u;dy/],

7l2 712
. 20X ) N
O-g)m)(P;Xl):_l—lZXli (1-2v)? _!. Mldl//+4v(1—v)‘xz—h‘ .! de(//}
ZC_ 7l2
o (P; E)z—ﬁ ~(1-2v)? { cos® M, dy

+2‘X2 - f_l‘ ,([ [vz + (1—v){v+ (1-2v)cos? l//}] LZdl//J,

72
afzz’(o’(P;Yl)C14(l—v)71[—{H(x2—ﬁ)+sgn(x2—ﬁ)} !sin wLldy
zl2
+(x, —h) jsiny/M;dy/],
0
wl2 wl2
cfl‘?(o)(P;Yl)CK{(l—ZV) .([ sin 21//M1*d1//—2(1—v)‘x2—ﬁ‘ ,[ sin ZV/L’;dW],

wl2

ag)(O)(P; X)) = CA(l—v)Y{—{H (x, - h) +sgn(x, — ﬁ)} I cosy Ldy
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712
- | COSV/M;dV/];
0

wl2

oPO(P;x)=C,2x%, {—szgn(xz ~h) ! cosy Lidy

7l2
+(x, —h) ,[ cosw[2v+sin2 ://] M;dy/] ,
0

zl2
o (P;%) = ~C,2%(x, ~) | cosyMidy,
7l2

o0 (P;X,) = clzz[—ngmxz -y | cosy iy
7l2
+(x, —h) I cosy (2 + cos? V/)M;dz//},
0
R GIAR )
7l2
OO(P;x)=C.2% | —(1- —y [ sinyLd
o (Py%) =C.2% | —(1-v)sgn(x, )OSInV/H v
72
+(x,—h) I sinq/[l—v+coszw}M;de,
0
7l2

oO(P;x) = C12Y1£ .('; (1—V+VC032 1//) M, dy

72
+|x, ~h { [1-v+(@+v)cos’y | L’;dw} (B1)

M %, /(%2 -€2)"" forQ? /%2 <1
' 0 Q%X >1 ’

. 3%/ (%2 -2)" for@? /%2 <1
i 0 0% /%2 >1
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X 0 O /%<1
% /(2 -%2)" foro? /%t >1
. 0 Q%<1
L2 = 5/2 )
3XQ/(Q° %) forQ? /% >1
Q=Rcos(¢—y). (B2)

For x,—h =0 corresponding to positions P= Py (x;= R sing, x, =h =X tan 6,
x3= R cos¢) (see (34)), the stresses o™ (P,,, %) are due to a circular smooth

dislocation parallel to x1xs with radius x,, displaced vertically by x, =h(x)
from the initial centre O. They may be calculated from [1]. The oscillatory parts
of the crack-tip stress fields ‘(”"A”(P) (34) (m=1, 2 and 3) contribute zero to
the crack extension force. This is because the stresses a(m)A”(P;a) do not

contain a singularity of the Cauchy-type; these are bounded. Below are
displayed results for crack dislocation family m= 3 only. Expressions for the
others are similar. To the linear order with respect to &,

c®@"(P;x)=0 (i=1,2and3), o&*(P;X)=0,

5P =S Y (1) [a2(2s+Dé, 5. (@)san Ay, (RH)

s,$;,53=0

x(2- 50(23))b<1><n 25-+1:m,,m, = 25)19 (1) - 2{25&,, ()sgn A, (R )
%(2 Bigany )52 (n = 25;m,, m, = 25,1 4205 D55 AR

xb;® (n = 25 +1;m,, m, =25, +1)1 2 (4)} H DY (%)%,

GO (P) =St Y (L)% [a@+1)2(25 +D)E, 4. (3)sgn A, (R )

$,5;,83=0

x(2= Gyos )bZ;D (n=2s+Lm,m =25)12 (1) +2v{2s&, (a)sgn A, (R, §)
X(2= 8y ) B (N =25;m, My = 25180 () + 2(25+1)&, 1 (2) 59N A, : (R, )

a

xby®(n=2s+Lm,m, =25, +1)1 (4)}” f DY (%)dx;; (B3)

1 fors,=0

m =28+1, OJyp, :{0 s 20’
3
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zl2
2+v)costy +1—v
19 @) =4 ] ETVCSV
0 Siny

I;(m =2s +1,m, =2s,)dy,
l2

15 (3)=4 .[ COSY | (m, = 25, +1,m, = 2,)dy,
o siny

7l2

C
19 @=a]

s 4 I,(m =2s, +1,m, =2s, +1)dy,
siny

zl2
I9M =4 j cosyl, (m =2s +1,m, =2s,)dy,
0
7l2
I23)=4 ,[ I,(m =2s,+1,m, =2s,)dy,
0
zl2

ID@)=4 I I,(m =2s, +1,m, =2s, +1)dy ,
0

[ (Pam,m) =D 2 L
(Fasm,m, 2M e myl (x + (tany) 7 x)™ (tanyx, + %)™ Q°
- 2k F(—k,—m,—k;m, +1; (tany) ™
xZ(m1+m3+2k+2)! 2K a T N2k ( ik ) )
2% (4 + (tany) ) Ki(m, +k)!
(P (==rian :
I,(P;a;m, =
,(P;a;m;,m;) 2™ Mm%+ (tany) )™ (tanwx, +X,)™ QP
" 2k F(—k,—m —k;m, +1; (tany) ™
xZ(m1+m3+2k+1)! 2K 2 T, \2k ( = ) )
2% (x, + (tan ) ' x,) Ki(m, +k)!

F is Gauss’s hypergeometric function.
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