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ABSTRACT 
 

An elliptical crack of centre O, in an infinitely extended isotropic elastic 

medium stressed uniformly in an arbitrary manner at infinity, is the subject of 

the present study. The applied tension 22

a  acts in the vertical x2 - direction and 

the shears 21

a and 23

a  act in the x1 and x3 directions, respectively. Poisson’s 

normal stresses 22

a  ( is Poisson’s ratio) acting in the x1 and x3 directions 

are incorporated into the analysis. The crack is in the plane (π) = 
' '

1 3Ox x tilted 

around Ox3=
'

3Ox  by an angle θ from Ox1x3. The methodology consists in 

representing the crack by a continuous distribution of three families j (j= 1, 2 

and 3) of elliptical dislocations the Burgers vectors of which jb are linked to 

the crack and directed along '

jx . The displacement and stress fields of the 

dislocations are first given. The equilibrium distribution functions Dj of the 

dislocations j satisfy, separately, to a singular integral equation whose form 

closer to the crack-tip is the simple Cauchy type; this allows to express Dj and 

corresponding relative displacement ϕj of the faces of the crack about the crack-

tip, crack-tip stresses, and the average crack extension force <G>                                 

(per unit length of the crack front), averaged over the length of the crack-front. 

For relatively low values of 12 21 22/a aM    ( 12 6M  ), < G > as a function 

of θ exhibits positive maxima in tension 22

a > 0 for θmax  53° and in 

compression 22

a  < 0 for θmax   42°. θmax decreases (resp. increases) with 

increasing M12 in tension (resp. compression). 22

a  provides positive 
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contributions to < G > indicating that the expansion of the elliptic crack in its 

own plane is feasible in tension. The shears 21

a and 23

a  when parallel to the 

plane of the loop contribute negative values to < G > suggesting that an 

elliptical crack is unable to expand in its own plane under a shearing stress that 

lies in its plane. Under such conditions, the planar elliptic crack is not the right 

configuration to dealt with crack nucleation in brittle solids under applied 

mixed mode I+II+III loading. We would have to start, from the beginning of 

crack expansion analysis, with a non-planar crack loop whose front should be 

locally of arbitrary shape.   
 

Keywords : fracture mechanics, linear elasticity, crack propagation and 

arrest, dislocations, crack extension force. 

 

 

RÉSUMÉ 
 

Fissure elliptique sous sollicitations extérieures arbitraires : 

dislocation, contrainte en tête de fissure et force d’extension de fissure 
 

Une fissure elliptique de centre O, dans un milieu élastique isotrope infiniment 

étendu et sollicité uniformément de manière arbitraire à l'infini, fait l'objet de 

la présente étude. La tension appliquée 22

a  agit dans la direction verticale x2 

et les cisaillements 21

a et 23

a  agissent dans les directions x1 et x3, 

respectivement. Les contraintes normales de Poisson 22

a  (  est le rapport 

de Poisson) agissant dans les directions x1 et x3 sont intégrées à l'analyse. La 

fissure est dans le plan (π) = 
' '

1 3Ox x  inclinée autour de Ox3= 
'

3Ox  d'un angle θ à 

partir de Ox1x3. La méthodologie consiste à représenter la fissure par une 

distribution continue de trois familles j (j = 1, 2 et 3) de dislocations elliptiques 

dont les vecteurs de Burgers jb  sont liés à la fissure et orientés selon '

jx . Les 

champs élastiques des dislocations sont d'abord donnés. Les fonctions de 

distribution d'équilibre Dj des dislocations j satisfont séparément à une équation 

intégrale singulière dont la forme plus proche du fond de fissure est du type 

simple de Cauchy ; cela permet d'exprimer Dj au niveau du front de fissure 

ainsi que le déplacement relatif correspondant ϕj des faces de la fissure. Les 

contraintes au niveau du front de fissure sont ensuite déduites de superpositions 

de contraintes de dislocations individuelles, en plus de la force d'extension de 

fissure moyenne < G > (par unité de longueur du front de fissure), moyennée 

sur la longueur du front de fissure. Pour des valeurs relativement faibles de 

12 21 22/a aM    ( 12 6M  ), < G > en fonction de θ exhibe des maximums 

positifs en tension 22

a > 0 pour θmax  53 ° et en compression 22

a  < 0 pour 
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θmax  42. θmax décroit (resp. croit) lorsque M12 croit en tension (resp. 

compression). La contrainte 22

a  fournit des contributions positives à < G > 

indiquant que l'expansion de la fissure elliptique dans son propre plan est 

réalisable en traction. Les cisaillements 21

a et 23

a  lorsqu'ils sont parallèles à la 

boucle contribuent par des valeurs négatives à < G > suggérant qu'une fissure 

elliptique est incapable de se dilater dans son propre plan sous une contrainte 
de cisaillement qui se trouve dans son plan. Dans de telles conditions, la fissure 

elliptique plane n'est pas la bonne configuration pour traiter la nucléation/initiation 

de fissure dans les solides fragiles sollicités en mode mixte I+II+III.  
 

Mots-clés : mécanique de la rupture, élasticité linéaire, propagation et arrêt 

de fissure, dislocation, force d’extension de fissure. 

 

 

I - INTRODUCTION 
 

In the stage of nucleation / initiation of a crack in a homogeneous elastic 

material under load, consider a crack in the form of a closed loop. A question 

that arises is under what condition the crack will develop. The answer is that 

the crack should expand in the configuration which corresponds to a maximum 

decrease in the energy of the system (elastic energy + potential energy of the 

loading mechanism). The most general approach is to start the analysis with a 

non-plane loop whose front is locally of arbitrary shape, calculate the extension 

force G of the crack (per unit length of the crack front), take the mean value             

< G > of G averaged over all the crack front and seek under which crack-front 

configuration < G > is maximum. It is in this configuration that the crack will 

expand under arbitrary general stresses as soon as 

 

< G >max = 2 γ.                                                                                                (1) 

 

Here γ is the surface energy. Concretely, it is in a later stage corresponding to 

the propagation of the crack over large distances that this general approach was 

carried out. Locally, the crack front can be considered plane, perpendicular to 

the direction of fracture propagation, and the arbitrary shape of the crack can 

be developed in the form of Fourier series [1 - 5]. Coming back to finite crack 

loops, this is the elliptic crack that is well documented, either under tension or 

shears or both ([6 - 9] to quote earliest works only). A common procedure is to 

look for defect elastic fields that satisfy the equations of equilibrium coupled 

with boundary conditions (at the defect surface for instance) [6 - 8]. Eshelby’s 

way [9] saves the use of ellipsoidal co-ordinates and the search for suitable 

stress functions or match stress and displacement at an interface. These elastic 

fields thus obtained can be used to study the expansion of an elliptical crack in 



391  Rev. Ivoir. Sci. Technol., 38 (2021)  388 - 409 

P.N.B. ANONGBA 

its plane while keeping in mind that this expansion may not correspond to that 
observed as underlined above: this is the difficulty encountered in fracture 

mechanics when the starter crack has an imposed shape. The objective of the 

present study is to investigate the expansion of an elliptical crack in its own plane 

under arbitrary applied loadings by representing the crack by a continuous 

distribution of elliptical dislocations. Figure 1 serves to illustrate the modelling.  
 

 
 

Figure 1 : Elliptical crack of centre O and semiaxes a1 and a2 along 
'

1x  and 
'

3x . The applied tension 22

a  acts in the vertical x2 - direction and the 

shears 21

a and 23

a  (parallel to the horizontal x1x3- plane) act in the x1 

and x3 directions. The crack is in the plane (π)= 
' '

1 3Ox x tilted around 

Ox3=
'

3Ox  by an angle θ from Ox1x3.The portions of the ellipse above 

and below the horizontal plane are solid and dashed as also are an 

elliptical crack dislocation with semiaxes 
'

1 1x x  and 
'

3 3x x . The 

Burgers vectors jb of the crack dislocations (j) are directed along '

jx  

 

We consider an infinitely extended isotropic elastic medium containing in its 

interior an elliptical crack with centre O, with semiaxes a1 and a2 along 
'

1x  and 

'

3x . The crack is in the (π)= 
' '

1 3Ox x  plane. It is made up of three families                     

j (j = 1, 2 and 3) of elliptical dislocations with Burgers vectors jb along 
'

jx . 

The medium is stressed uniformly at infinity with a tension 22

a  in the vertical 

x2 -direction and shears 21

a and 23

a  (parallel to the horizontal x1x3- plane) in 
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the x1 and x3 directions. The plane (π) = 
' '

1 3Ox x  is inclined around the x3 - 

direction by the angle θ from Ox1x3. The equation of the ellipse is given by : 
 

2 2
''

31

1 2

1
xx

a a

   
    

   
.                                                                                           (2) 

 

Distribution functions Dj of the dislocations j are defined such that 1 1( )jD x dx

represents the number of dislocations j in a small interval 1dx  located at the 

position 
'

1 1x x on the 
'

1Ox - axis. To that position of the dislocations 

correspond the position 
'

3 3x x  on the 
'

3Ox - axis. The following 

proportionality relation is assumed : 
 

1 3 2 1a x a x  .                                                                                                      (3) 

 

(3) is used in the calculation of the crack extension force G (per unit length of 

the crack front) as explained below (Section 2). Hence, we admit that 

1 3( ) ( )j jD x D x ; this conforms with the result that the relative displacement 

of the faces of the crack ϕj is an ellipse (see [7] and [9], for example). The 

elastic fields in the fractured medium read as a superposition of the elastic 

fields of the crack dislocations. When the dislocations are circular, stress fields 

of families 1 and 3 (glide dislocations) have been obtained by Keller as 

recorded by Kröner [10] and those for dislocation 2 (prismatic loop) by Kroupa 

[11]. By line integration of the Peach-Koehler equation for a circular 

dislocation loop, recent stress expressions for these dislocations have been 

presented [12]. Representations of elastic fields of circular dislocations in terms 
of spherical harmonics are displayed by [13]. Elastic fields of elliptical 

dislocations are uncommonly reported. We shall provide expressions for these 

using the method called “Method of Fourier series or integrals” in review works 

by Mura [14, 15]: the method consists in writing the plastic distortions associated 

with the dislocation in Fourier integral series forms. The displacement associated 

with a single wave (i.e. simple sinusoidal) plastic distortion is available from       

[14, 15]. Those of the dislocation are derived by superposition. In Section 2 

(Methodology), the procedures for determining the elastic fields of the dislocations 

and crack analysis are explained. In Section 3, are given the elastic fields                   

(stress and displacement) of the elliptical dislocations j, distribution functions Dj 

of the crack dislocations and corresponding relative displacement ϕj of the faces 

of the crack, crack-tip stress and crack extension force G per unit length of the 

crack front, assuming the crack to expand in its own plane. Sections 4 and 5 are 

devoted to discussion of the results and conclusion, respectively.  
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II - METHODOLOGY 
 

II-1. Elastic fields of elliptical crack dislocations 
 

The three types j (j=1, 2 and 3) of crack dislocation considered have Burgers 

vectors 1 ( ,0,0)b b , 2 (0, ,0)b b  and 3 (0,0, )b b  along '

jx ; they spread in 

the
' '

1 3Ox x -plane in the form (2). We shall make use of the displacement 
'( )mu x , 

m=1, 2 and 3, (see (5) below) due to a plastic distortion '( )ij x  given as a 

periodic function of coordinates ' ' ' '

1 2 3( , , )x x x x  

 
' '' .( ) ik x

ij ij k e                                                                                                  (4) 

 

where ' ' ' '

1 2 3( , , )k k k k with 
'

jk  arbitrary constants. Mura [14, 15] has shown the 

associated displacement component to be  

 
' '' ' .( ) ik x

m l klji mk iju x ik C L e   .                                                                              (5) 

 

For isotropic material,  
 

'2 ' '

'4

( 2 ) ( )

( 2 )

km k m
mk

k k k
L

k

    

  

  



                                                                 (6) 

 

where '2 '2 ' 2 ' 2

1 2 3k k k k     and  

 

klji kl ji kj li ki ljC         ,                                                                        (7) 

 

ij  being the Kronecker delta and λ and µ are Lamé’s constants. The plastic 

distortions ( )l

ij  associated to the dislocations l (l= 1, 2 and 3), are expressed 

successively. 
 

 (1) ' ' ' 2 2 ' ' 2 2

21 2 1 1 3 2 1 1 3 2( ) 1 / 1 /b x H x a x a H x a x a          
   

,    '

3 2x a   

          
' '. '1 2 1 2

2

2

[ ]

(2 )

ik xba a J
e dk



 

  

  

     ;                                                                (8) 

 

J1[η2] is the Bessel function of the first kind; (1)

21 0    for '

3 2x a , 

2 2 '2 2 ' 2

2 1 1 2 3a k a k   , ' ' ' '

1 2 3dk dk dk dk  and, δ and H are the Dirac delta and 
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Heaviside step functions, respectively. The other components of the plastic 

distortion are zero. (1)

21   in its Fourier form is a superposition of expressions of 

the form (4). Therefore, associated displacements 
(1)

mu  (m=1, 2 and 3) are similar 

superpositions of the displacement (5). Making use of (6) and (7), we write 
 

' '
(1) ' '1 2 1 2

2 1 1 22 '2 '2

1

(2 ) (1 )
m m m

ba a k k
u i k k

k k
 

 

  

  


   


    

                                          
' '' ' ' . '1 2

1 1 2 2 3 3

2

[ ] ik x

m m m

J
k k k e dk


  


     .                 (9) 

 

Performing the necessary integrations in (9) provide the displacements in 

Cartesian coordinates. We now consider the dislocation j= 2 with form (2) and 

Burgers vector 2 (0, ,0)b b along '

2x . There are only two non-zero components 
(2)

12  and (2)

32  of the plastic distortion.  

 

 (2) ' ' ' 2 2 ' ' 2 2

12 2 1 1 3 2 1 1 3 2( ) 1 / 1 /bH x x a x a x a x a           
   

 

               
' '

'
. '1 2 1 1 2

2 '

2 2

[ ]

(2 )

ik xba a k J
e dk

k



 

  

  

     ;   

       (2) ' ' ' 2 2 ' '2 2

32 2 3 2 1 1 3 2 1 1( ) 1 / 1 /bH x x a x a x a x a           
   

 

               
' '

'
. '31 2 1 2

2 '

2 2

[ ]

(2 )

ik xkba a J
e dk

k



 

  

  

     .                                                     (10) 

 

Making use of (5) and (6), we obtain  

 

' '
(2) 1 1 3 31 2

2(2 ) 1

m m
m

k kba a
u i

 

 

  

  


 


    

                                          
' '

' 2
. '2 1 2

'2 '4

2

[ ] ik xk J
e dk

k k





 
   
 

 ,       m= 1 and 3 

     
'

(2) 1 2 2
2 2 ' '2

2

(2 )1

(2 ) (1 )

ba a k
u i

k k



 

  

  

 
  


    

                                          
' '

' 3
. '2 1 2

'4

2

[ ]

(1 )

ik xk J
e dk

k



 


 

 
.                                    (11) 
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We consider the dislocation j = 3 with form (2) and Burgers vector 3 (0,0, )b b

along '

3x . For the plastic distortion, we have 

 

 (3) ' ' ' 2 2 ' 2 2 '

23 2 1 1 3 2 1 3 2 1( ) 1 / 1 /b x H x a x a a x a x         
   

,    '

3 2x a   

          
' '. '1 2 1 2

2

2

[ ]

(2 )

ik xba a J
e dk



 

  

  

     ;                                                               (12) 

 
(3)

23 0    for '

3 2x a  and the other components of the plastic distortion are 

zero. (12) and (8) are identical although their Cartesian form is written 

differently. Making use of (5) to (7), we obtain (m= 1, 2 and 3) 

 

' '
(3) ' ' 2 31 2

3 2 2 32 '2 '2

1

(2 ) (1 )
m m m

k kba a
u i k k

k k
 

 

  

  


   


    

                                          
' '' ' ' . '1 2

1 1 2 2 3 3

2

[ ] ik x

m m m

J
k k k e dk


  


     .                (13) 

 

At this stage, we can write down the various displacements ( )ju (j= 1, 2 and 3) 

associated with the three types j of crack dislocation with form (2). The stress 

fields ( )( ) j can be obtained by differentiating the displacements. Our 

calculation results are displayed in Section 3. 

 

II-2. Crack analysis  
 

The crack system (Figure 1) has been described earlier in Section 1. The condition 

that the crack faces remain free from any traction is adopted; this gives 

 

12

22

23

0

0

0













.                                                                                                           (14) 

 
'( )ij x  stands for the total stress at any point 

' ' ' '

1 2 3( , , )x x x x  in the medium and 

is linked to jD . In (14), we are concerned with the positions on the crack faces 

only. We write ij  as 

 
( )(1) ( )(2) ( )(3)A C C C

ij ij ij ij ij          .                                                                (15) 
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( )A  is the externally applied stress including normal induced stresses from 

Poisson effect; relatively to '

ix , its components are  

 

     2

11 22 21(1 )sin sin 2A a a

A A              

     21 22 21(1 )sin 2 / 2 cos 2A a a

A        

     13 23sinA a    

     2

22 22 211 (1 )sin sin 2A a a

A            

     23 23cosA a    

 

 33 22

A a

A    .                                                                                                 (16) 

 

νA is Poisson’s ratio ν so denoted to track the contributions of the Poisson’s 

stress.  
 

 
1

( )( ) ' ( ) '

1 1 1

0

( ) ; ( )

a

C m m

ij ij mx x x D x dx     (m=1, 2 and 3)                                     (17) 

 
( )m

ij  is the stress field at 
' ' ' '

1 2 3( , , )x x x x  due to the elliptical crack dislocation 

m with position '

1 1x x  along '

1x  in the distribution (Figure 1). (14) gives three 

integral equations the resolution of which yields the Dm. The relative 

displacements ϕm of the faces of the crack in the '

mx -direction (m= 1, 2 and 3) 

are obtained by integration from the relation ' '

1 1( )m md bD x dx   : 

 

1

'
1

1 1( )

a

m m

x

bD x dx   , '

1 1x a .                                                                           (18) 

 

From (21) to (23), one can obtain the crack-tip stresses. The crack extension 

force G per unit length of the crack front is defined in previous works                         

(see [16, 3], for example). We shall refer to Figure 2 as illustration to write 

down an expression for G under the requirement that the crack loop expands in 

its own plane. Allow the elliptical crack with semiaxes a1 and a2 on the '

1x  and 
'

3x  axes to advance steady from a1 to a1+δa1 and a2 to a2 + δa2 but apply forces 

to the freshly formed surfaces to prevent relative displacements; the energy of 

the system is unaltered. Now allow these forces to relax to zero so that the crack 

extends effectively from a1 to a1+δa1 and a2 to a2 + δa2 on the '

1x  and '

3x  axes. 
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The work done by these forces corresponds to a decrease of the energy of the 

system that we shall estimate (the energy of the system consists of the elastic 

energy plus the potential energy of the loading mechanism). We take a position 

P on the freshly formed surface (Figure 2) to which we attach a surface element 

ds= 'd e PP   with /e OP OP  . The energy change associated with ds 

is (ds ( )

2 / 2i

i
i

u  ) where ( )iu  is the difference in displacement across the 

lengthened crack just behind its tip, in the '

ix - direction. When the crack 

advances from '

1 1x a  to a1 + δa1 and '

3 2x a  to a2 + δa2 on the '

1x  and '

3x  

axes, the energy decrease (- δE ) associated with a surface element  
 

 
 

Figure 2 : To illustrate the calculation of the crack extension force G. 

Elliptical crack front allowed to advance steadily from a1 to 

a1+δa1 and a2 to a2 + δa2 along '

1x  and '

3x  axes. An arbitrary 

point P ( '

1 sinx   , '

3 cosx   ) on the newly created surface 

is indicated to which is associated a surface element ds 

(hatched). At fixed ϕ, as the crack expands, P moves from P0 (
'

1 0 sinx   , '

3 0 cosx   )  on the shorter crack to Pf (
'

1 sinfx   , '

3 cosfx   ) on the lengthened crack front. P’ is 

the position of P on an elliptical crack dislocation after a 

change dϕ of the polar angle ϕ; the crack dislocation meets the 
'

1x  and '

3x  axes at 1x  and 3x  such that 2 1 1 3a x a x   

 

 
0

2 2 2 2

0 1 1sin cos /
f

rs ds a d a a




                                                  (19) 
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( 1 2/ra a a  and δa1 being small and, when used below, will be let to go to 

zero.) is given as  
 

 
0

3
( ) 2 2 2

2
1

1
sin cos

2

f

i

i r
i

E u a d d




      



      ,                                  (20) 

 

the integration being performed with respect to ρ only. The crack extension 

force G (per unit length of the crack front) at P0 is defined as  
 

1 0
lim /
a

G E s





   .                                                                                      (21) 

 

Expressions for G are given in Section 3.  

 

 

III - RESULTS 
 

III-1. Elastic fields of crack dislocations 
 

For '

2 0x  , the displacements due to the dislocations j (j=1, 2 and 3) read :  

 

(1) 1 2
1 2' '

2 1

2(1 ) (1 2 )
8 (1 )

m m m

ba a
u

x x
   

 

 
    

  
 

                         
2 2 2

' *

2 1 2 3'2 ' ' ' '

1 2 1 3 1

m m mx A
x x x x x

  
   

   
     

 ,  

(2) ' * '1 2
2 2 2'

2

4(1 ) ( ) ( 0)
8 (1 )

m m

ba a
u H x A x

x
 

 

 
   

 
 

                
1 3 2' ' '

1 3 2

(1 2 ) 2(1 )m m m
x x x

    
   

     
   

 

                             
2 2 2

' *

2 1 2 3' ' ' 2 ' '

2 1 2 2 3

m m mx A
x x x x x

  
   

           

,  

(3) 1 2
2 3' '

3 2

(1 2 ) 2(1 )
8 (1 )

m m m

ba a
u

x x
   

 

 
    

  
 

                      
2 2 2

' *

2 1 2 3' ' ' ' ' 2

1 3 2 3 3

m m mx A
x x x x x

  
   

   
     

; m= 1, 2 and 3    (22) 
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'
2 1

' ' ' '
1 1 3 3( )* ' '1 2

1 3

1 2

[ ]x
i k x k xJe

A e dk dk
 

 

 




 

   ,                                                           (23) 

2 '2 ' 2

1 1 3k k   . In use we take  

     

/2
' *

* 2

*2
0

1 2

2
4

x A
A d

a a a




    ;                                                                          (24) 

     

 '
2

1

2 *2 2
*

22 42
1

1x

a x
A r dx

r rr


   

         

 ,      *2 2 2 2

2 1 1 sinra a a      ,  

     ' '

1 3sin cosx x    ,                
2

2 2 *2 2

1 2

r a x



    

, 

      
2

*2 2 2 2 24a x x      . 

 

The stress fields are obtained by differentiating the displacements. For '

2 0x  , 

it is safer to put '

2 0x   in the Fourier forms of the elastic fields (such as (9), 

(11) and (13), for example) before integrating with respect to '

ik . We display 

below stresses used in the crack analysis. For '

2 0x  :  

 

     

/2

(1) 2 *

12 1 1 2
/2

1 cosC a a M d





   


      

     

/2

(1) * (3)

23 1 1 2 12
/2

1
sin 2

2
C a a M d





    


    

     (1) (3)

22 220    

     

/2

(3) 2 *

23 1 1 2
/2

1 cosC a a M d





    


       

     

/2

(2) *

22 1 1 2
/2

C a a M d





 


   

     (2) (2)

12 230                                                                                                 (25) 

where 1 / 2 (1 )C b     and 

     

*2 2 3/2 2 *2

* 2 *2

2 *2

( ) / 1

/ 1

0 / 1

a for a

M a

a

   


   
  

    .                                                   (26) 
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III-2. Crack dislocation distributions 
 

We use the condition (14) for traction-free at the crack faces and associated 

stress quantities (16), (17) and (25) at positions ' ' '

1 2 3( , 0, 0)CP x x x   , '

1 1x a , 

to obtain the following integral equations for the Dj:  

 
1

'
1

2 2 21
12 1 1 1 1 1 1 12

1 1

( / 2, )1
2 ( ) 1 / ( / 2, , ) 0

a

A

r

x

F y
C a dx D x y y y

x y

 
   

 
        

 
  

1

'
1

2 2

22 1 1 2 1 1 1

1

1
2 ( ) ( / 2, , ) 0

a

A

r

x

C a dx D x y y
x

     

1

'
1

2 2 21
23 1 1 3 1 1 1 12

1 1

( / 2, )1
2 ( ) 1 / ( / 2, , ) 0

a

A

r

x

F y
C a dx D x y y y

x y

 
  

 
       

 
  ;  

(27) 
/2

1
2 2

0 1

( / 2, )
1 sin

d
F y

y










 , 

/2

2

1 1
2 2 2 2

0 1 1

( / 2, , )
(1 sin ) 1 sin

d
y y

y y





 

 
 

  

 

are complete elliptic integral of first and third kind, respectively; 
2 2 '2 2 2

1 1 1/ 1r ry a x x a   . As PC moves closer to the crack-tip, (i.e. '

1 1x a ), (27) 

 becomes 

 

     

1

1

12 1 1 1 1

11

1
( ) 0

1

A

y

C dy D y
y






 
  

     

1

1

22 1 1 2 1

11

1
( ) 0

1

A

y

C dy D y
y






 
  

     

1

1

23 1 1 3 1

11

1
(1 ) ( ) 0

1

A

y

C dy D y
y



 


  
 ;                                                       (28) 

 

0 < 1 1y , 1y is a finite sufficiently small real, a fraction of unity. Using 

Muskhelishvili [17] (his relations (88.8 to 88.11), p. 251), we arrive at  

 

0
'

1

1

1
j jD

y
 


 ;       (j=1, 2 and 3)                                                         (29) 



401  Rev. Ivoir. Sci. Technol., 38 (2021)  388 - 409 

P.N.B. ANONGBA 

     ' 2 2 '2 2 2

1 1 1/ 1r ry a x a a   , 

      12 1 22 2 3 23

1

1
/ (1 )A A A

j j j j
C

       


     , 

     
'

0 1y   

 
'

1y  is of the order (or a fraction) of unity. (29) is the value of the dislocation j 

distribution closer to the crack tip. The associated relative displacement of the 

faces of the crack is (under the condition 2 1ra  ) 

 

2

2

0 2
2

1
2 ( , ) 1 1 ( , )

1 1

r

j j r

r

a
b a F p a E p

a

    

 
     

    

;                    (30) 

     

'

1

2

1

1 1 r

y

a






 

,   

2

2

1 1

1 1

r

r

a
p

a

 


 

 

 

F and E are the elliptic integral of the first and second kind, respectively. (30) 

is given for 2 1ra   but this restriction disappears in the expression for G that 

follows.  

 

III-3. Crack-tip Stress and crack extension force   
 

To obtain the crack extension force G (section 2), it is required to express the 

crack-tip ij  stresses at P (Figure 2) ahead of the shorter crack or equivalently 

as performed below behind the lengthened crack. The crack-tip stresses may 

be identified to the following expression 

 
1 1

1

3
( ) ' ' '

1 1 1
1

( ) ( ; ) ( )
a a

m

ij ij m
m a

P P x D x dx


 




   ,              δa1 << a1  

                
1 1

1

3 3
( ) ' ' ' ( )

1 1 1
1 1

( ; ) ( )
a a

m m

ij m ij
m x m

P x D x dx


 


 

     .                                         (31) 

 

The lower limit of integration goes from a1 to 1x  because, from the stress 

expressions (25), the elliptical crack dislocations passing through positions 

between P0 and P (Figure 2) contribute nothing. The relation (3) applies to any 

crack dislocation. (29) is used for '

1( )mD x  where for the lengthened crack 
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' 2 2 '2 2 2

1 1 1 1/ ( ) 1r ry a x a a a    ; this applies also to ϕm (30) that will be used for 

( )mu  (20) in the calculation of G (21). We may write in contracted form  

 

 

0 /2

1
1 12 2 22 3 23 1 0 3/2

*3 *2
1 /2 0

2
1

m m m r

a d
C a

a a b





 
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
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   
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3 3 1(1 cos ) sin 2 / 2m            ,      m=1, 2 and 3              (32) 

 

where  *2 2 2 21 1 sinr ra a a        and  
2

*2 2 2 2 *

1 11 / [ ]r rb a a a a a    

.We can write G (21) at P0 (Figure 2) as  
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2
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f

d

b






           


 .              (33) 

 

Next, we specialize the calculation to two positions ' '

1 1 1 3( , 0)P x a x   and 
' '

2 1 3 2( 0, )P x x a   on the front of the elliptical crack lying in ' '

1 3Ox x  with 

semiaxes a1 and a2 along '

1x  and '

3x . We obtain G1= G(P1) and G2= G(P2) as  

 


2

2
2 20 1

0 2 1 122 2
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8 1
ln / 1 (1 )sin sin 2I

m m m r A

r

a
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a a


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 
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               
2

1 2 12(1 ) (1 )sin 2 / 2 cos 2m m A M           

                    2 2

13 1 2cos / (1 ) (1 )m mM          ;                                       (34) 

 

12 21 22/a aM   ,  13 23 22/a aM   ,   
20 2

0 (1 ) /I

IG K E  ,   0

22 1

a

IK a  . 

 

The quantity in the logarithm is dimensionless, hence 1a  is introduced with this 

respect; E is Young’s modulus. We defined < G >= (G1 + G2) / 2 as an average 

value of the crack extension force per unit length of the crack front, and  
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2

0
0 1 12 4

8
/ ln( / )I

r

G G G a a
a





 
    

 
                                                              (35) 

as a normalized quantity.  
 

2
2 2

122 (1 ) 1 (1 )sin sin 2r AG a M           

              
22

12(1 ) 1 (1 )sin 2 / 2 cos 2r Aa M           

                      2 2 2 2

13( 1 )cos / (1 )ra M      ;                                                  (36) 
 

2 2 2 2 2 2

12 132 ( 0) 1 1 (1 ) ( 1 ) / (1 )r r rG a a M a M                   . 

 

The condition for an extremum of G   with respect to θ is given by

/ 0G      . We obtain  
 

 2 2

12 122(1 ) /G AM BM C                                                              (37) 

 

Here 2 22(1 ) 2 (2 ) sin 4rA a        , 

 2 2 22(1 ) (1 )(1 )cos2 (1 ) 2 (2 ) cos4A r A rB a a                , 

 2 2 2sin 2 (1 ) (1 )(1 )A rC a         

       2 2 2 2 2

13(1 ) (1 ) 2 (2 ) cos2 ( 1 )A r ra a M                

 

For fixed M13, / 0G       corresponds to finding the roots of a 

polynomial of degree 2 in M12. We obtain ( 22

a > 0 for tension and 22

a < 0 for 

compression) 

 

12 22sgn( )
2

a B
M

A


  
 ;                                                                              (38) 

     2 4B AC   . 

In Figure 3 (a and b) are exhibited G   (35) as a function of 12 21 22/a aM    

and θ the crack inclination angle (see Figure 1) at 13 23 22/a aM   = 0. For 

moderate fixed 12 6M  , positive maximums are observed both in tension and 

compression at angles 53° and 42° in tension and compression, approximately. 

Figure 4 is a plot of the couples (M12, θ) (38) at which G  (35) exhibits 

extremums for fixed M13. M12 ( 22

a > 0, tension) increases strongly as θ 

decreases to zero. The smallest positive values of M12 are at about 53°. The 
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region 53   (approximately) are associated with positive G maximums. 

As θ increases towards 90°, M12 becomes negative, decreasing strongly as θ 

moves closer to 90°. The extremums in these θ regions are presumably 

minimums in tension. We should be aware that our analysis also cover 

compression ( 22

a <0 ; M12 < 0). Results corresponding to 22

a < 0 

(compression) are obtained by inverting the sign of M12 in Figure 4. In this 

latter situation, as θ increases towards 90°, Poisson’s stress 22

a

A   that is 

tensile becomes more and more effective; this indicates that positive G 

maximums exist above 50°.   

 

 

 
 

Figure 3 : Normalized crack extension force G   (35) as a function of the 

reduced applied shearing stress 12 21 22/a aM    and crack 

inclination angle θ. (a) 22

a > 0 for tension: G  displays positive 

maximums in the region about θ=53° for moderate 12 6M  . These 

maximums increase with M12. (b) 22

a < 0 for compression: positive 

maximums G are at about θ=42° for moderate 12 6M  . These 

maximums increase with 12M . M13=0, ν=1/3 and ar= 3/4 



405  Rev. Ivoir. Sci. Technol., 38 (2021)  388 - 409 

P.N.B. ANONGBA 

 
 

Figure 4 : Couples (M12, θ) (38), 22

a > 0 for tension, at which G  (35) 

displays extremums when plotted against θ (at fixed M13). To smaller 

θ correspond higher M12. The positive smallest values of M12 are at 

about 53°. Negative values are further observed as θ moves toward 

90°. M13=0, ν=1/3 and ar= 3/4. Results corresponding to 22

a <0 

(compression) are obtained by inverting the sign of M12 

 

 

IV - DISCUSSION 
 

Approximately, one can write from (34) that 2

1 2( ) ( ) / rG P G P a  for the two 

positions ' '

1 1 1 3( , 0)P x a x   and ' '

2 1 3 2( 0, )P x x a   on the front of the crack 

lying in ' '

1 3Ox x  with semiaxes a1 and a2 along '

1x  and '

3x . 1 2/ra a a < 1 leads 

to G1 > G2; the crack expansion would begin first from P1 and a1 will increase 

towards a2. Under such conditions, the crack evolves towards a circle (ar = 1). 

We arrive at the same conclusion when ar >1. Hence, < G > = (G1 + G2) / 2 is 

valuable as a measure of the crack extension force averaged over the length of 

the crack front. Another property of the crack system comes from the value of 

< G > at θ= 0 (36). < G >(θ= 0) is positive under pure tension (M12 = 0 and 

M13= 0) and equal to 2(1 )ra . Positive < G > indicates that the expansion of 

the crack corresponds to a decrease of the energy of the crack system (see [16], 

for example). Negative < G > means the contrary. As can be seen from (36) at 

θ= 0, the shearing stresses produce negative < G > indicating that the crack is 

unable to expand under pure shears parallel to the plane of the loop. This is also 

apparent on Figure 4 that displays the couple (M12, θ) at which G   is 

positive maximum in tension for θ < 53° approximately. M12 increases 

indefinitely as θ goes to zero. In support of our findings, we shall refer to 

Eshelby [9] who investigated the elastic fields due to an ellipsoidal inclusion 
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(a crack is an inclusion at whose boundary there are zero surface tractions). 

Eshelby defined a parameter γ such that  

 

energy in matrix 1

energy in inclusion






  

 

He showed that γ is about 1 for shearing stresses parallel to the plane of the 

loop and concluded that there is no accommodation by the matrix of the 

expansion of the inclusion in its own plane. In the case displayed by Eshelby 

[9] (see his relation (5.7), p. 393), the shearing applied stress S makes an angle 

α with the plane of the loop. An important implication of the observation that 

an elliptical crack cannot be expanded (in its own plane) under externally 

applied shearing stresses parallel to its plane may be that the planar elliptical 

crack is not the correct crack model to provide the right crack configuration 

that corresponds to the largest decrease of the energy of the system, under 

arbitrarily applied loadings. A way to get this exact configuration is to begin 

the crack analysis with a non-planar loop whose front should be locally of 

arbitrary shape, calculate the average crack extension force < G > and look for 

crack configuration (the expected one) that maximises < G >. It is noticed for 

small positive M12 that positive G maximums are observed at θ < 53° 

approximately (θ values decrease with increasing M12 as in Figure 4). When 

the crack is infinitely long (under general loading mixed mode I+II+III), works 

exist that predict values of the crack inclination angle θ for positive average G 

maximums (see [3] and [5], as examples). Above predictions are for brittle 

fracture with no slip dislocations (i.e. plasticity). In many materials where there 

are both plasticity and crack initiation, an overlap is anticipated between brittle 

fracture prediction and maximum 45° shear direction inclination with respect 

to the fatigue load direction. However, situations exist where this confusion 

cannot be made. We shall refer to the work by Zhao et al. [18] (see their Fig. 

5). The average angle of the initial fracture surface was measured as 52° with 

respect to the [001] far- field loading direction. This angle 52° has nothing to 

do with a (111)-slip plane because the angle between a [001]-direction and a 

(111) plane is only 35° in face-centred-cubic metals. This 52° angle 

observation belongs to the predictions of brittle elastic crack propagation 

(present analysis or [5] as a most general analysis for large cracks). Now 

assume that the crack inclination angle θ is close to 90° (see Figure 1). Under 

positive 22

a  no tension stress is applied to the crack loop. However, in 

compression ( 22

a  < 0), a tension 22

a

A   normal to the crack plane is suffered 

by the crack. Under such conditions, for sufficiently applied compression, a 

prediction can be anticipated that the crack will expand. Positive G 

maximums should exist for angles θ closer to 90°. Lastly, we assume that                        
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θ = 0 and no shearing stress (i.e. M12 = 0 = M13). Assuming expansion of the 

circular crack in its own plane under pure tension, the critical stress σT for crack 

propagation is given by the Griffith G = 2γ condition; this leads with (35) to  

 

2 2

0 1 1 14(1 ) ln( / )
T

E

a a a

 


 



,     1ra                                                       (39) 

 

0  is of the order or a fraction of 1. Its rigorous derivation requires to solve 

exactly the integral equations (27) for Dj. Eventually, a value to 0  may be 

obtained from the expressions of the relative displacement of the faces of the 

crack under tension or shear as provided by different methods (see [7, 9], for 

example). The classical decrease of stress as the crack length increases is 

present in (39) except for a coefficient 1 1ln( / )a a . 1a  must be larger than 1a . 

The physical meaning of 1a  is wanted. One can speculate that the 

representation of the elliptical crack by continuous distributions of Volterra 

dislocations requires a minimum size to the crack loop.  

 

 

V - CONCLUSION 
 

An elliptical crack with center O, inside an infinitely extended isotropic elastic 

medium, is considered in the present study. The medium is stressed uniformly 

at infinity in tension 22

a along the vertical x2 -direction and shears 21

a and 23

a  

(parallel to the horizontal x1x3- plane) in the x1 and x3 directions, respectively. 

Poisson’s normal stresses 22

a

A   acting in the x1 and x3 directions are 

incorporated into the analysis. The crack is in the plane (π)= 
' '

1 3Ox x tilted around 

Ox3=
'

3Ox  by an angle θ from Ox1x3. The objective of the study is to analyze the 

conditions of expansion of this crack in its own plane. The approach used is to 

represent the crack by a continuous distribution of three families j (j = 1, 2 and 

3) of elliptic dislocations of Burgers vectors bj attached to the crack and 

oriented in the 
'

jx  directions. The displacement and stress fields of the 

dislocations are first provided. The method used consists in giving the plastic 

distortions of the dislocations in their form in Fourier series; then by the 

superposition of the elastic fields due to plastic distortions of simple sinusoidal 

shape, one arrives at the elastic fields of the considered dislocations. The 

distribution functions Dj of the dislocations at equilibrium satisfy individually 

a singular integral equation whose expression closer to the crack front is of the 

simple Cauchy type; this makes it possible to give simple mathematical 
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expressions of Dj as well as the associated relative displacement ϕj of the faces 

of the crack, crack-tip stress, and average crack extension force <G> per unit 

length of the crack front (averaged over the crack-front points). The tension 

stress 22

a  gives a positive contribution to <G> suggesting that an expansion 

of the crack in its own plane is feasible in tension. Both shears 21

a and 23

a  

give a negative contribution to <G> when they are parallel to the crack, which 

indicates that an expansion of the loop is not possible under such conditions. 

Under general applied loading , <G>(θ) exhibits positive maximums in tension 

22

a > 0 for θ less than 53° (approximately) and in compression 22

a < 0 for θ 

greater than 40° (approximately) the origin of which is associated with the 

Poisson’s stress 22

a

A  which acts in tension on the crack loop. The 

observation that an elliptic crack cannot be expanded in its own plane under 

externally applied shearing stresses parallel to the plane of the loop would mean 

that a small planar elliptical crack is not the right configuration to dealt with 

crack nucleation and initiation in loaded brittle solids under general loading. 

We would have to begin the crack expansion study with a non-planar loop 

whose front is locally of arbitrary shape (thinking about an expansion into a 

Fourier series). Then look for the configuration that corresponds to the largest 

energy decrease. This is under this configuration that we should apply the 

Griffith condition <G>max = 2γ.  
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