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ABSTRACT 
 

Planar straight-fronted cracks, inside an infinitely extended isotropic elastic 

medium, whose finite lengths increase at a constant velocity 2v, are the subject 

of the present study. The modes J of applied loading (J = I and II) are 

considered separately. Cracks are represented by continuous distributions of 

straight edge dislocations J (J = I and II) with Burgers vectors bJ directed along 

the applied tension and shear, respectively. Explicit expressions of the elastic 

fields (displacement and stress) of the crack dislocations J moving uniformly 

at a velocity v are first given for velocities ranging from zero to values 

exceeding cl, the velocity of longitudinal sound waves. Then, crack physical 

quantities are given, namely the dislocation distribution function DJ, the 

relative displacement ϕJ of the faces of the crack, the crack-tip stresses and the 

crack extension force G(J) per unit length of the crack front. These results cover 

the velocity range [0, cl]. In mode I loading and in the subsonic velocity regime 

(v < ct, the velocity of transverse sound wave), G(I) increases continuously with 

v from the value in the static case 
( )

0

IG (v = 0) to a maximum 
( ) ( )

max 01.32I IG G  

at v = v(e)   0.52 ct; then, G(I) decreases rapidly to zero when v tends to ct. In 

agreement with experiments, the value v(e) corresponding to the maximum of 

the crack extension force is identified to the terminal tensile crack velocity, 

observed in the fracture of brittle materials.  No reference is made to the 

Rayleigh wave velocity cR. In the transonic speed regime (ct < v < cl), the crack 

characteristic functions are identical in form with those of the subsonic regime. 

However, for v < ct√2, we show that the faces of the crack, separated under 

load before the extension of the crack, close under motion; this indicates that 

the crack movement is hindered. for v > ct√2, the motion of the crack is 

possible. In mode II loading and in the subsonic regime (v < ct), G
(II) increases 

continuously with v (when v < cR) from the value in the static case 
( )

0

IIG (v = 0); when 
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v approaches cR, G(II) increases very rapidly. Above cR (cR < v < ct), the relative 

displacement of the faces of the crack, formed under load before crack motion, 

closes in motion; this indicates that crack motion is impeded. The velocity of 

uniformly moving cracks is limited by the Rayleigh wave velocity. In the 

intermediate speed regime (ct < v < cl), the crack characteristic functions are 

similar in form to those below cR. The movement of the crack is possible. 
 

Keywords : fracture mechanics, linear elasticity, crack propagation and 

arrest, dislocations, crack extension force. 

 

RÉSUMÉ 
 

     Fissures planes en mouvement uniforme sous la sollicitation des modes 

I et II 
 

Des fissures planes à front droit, à l’intérieur d’un milieu isotrope, élastique, 

infiniment étendu, dont les longueurs augmentent à vitesse constante 2v, font 

l’objet de la présente étude. Les modes J de charge appliquée (J = I et II) sont 

considérés séparément. Les fissures sont représentées par des distributions 

continues de dislocations coins droites J (J = I et II) avec des vecteurs de 

Burgers bJ dirigés suivant la tension et le cisaillement appliqués, 

respectivement. Des expressions explicites des champs élastiques 

(déplacement et contrainte) des dislocations J de fissure en mouvement 

uniforme de vitesse v sont d’abord données pour des vitesses allant de zéro à 

des valeurs excédant cl, la célérité des ondes longitudinales. Ensuite, des 

grandeurs physiques caractéristiques des fissures sont données, notamment la 

fonction de distribution DJ des dislocations, le déplacement relatif ϕJ des lèvres 

de la fissure, les contraintes en tête de fissure et la force d’extension G(J) de 

fissure par unité de longueur du front de fissure. Ces résultats couvrent le 

domaine de vitesse [0, cl]. En mode I de sollicitation et dans le régime de vitesse 

subsonique (v < ct, la célérité des ondes transversales), G(J) croit continûment 

avec v à partir de la valeur 
( )

0

IG correspondant au cas statique (v = 0) pour 

atteindre un maximum 
( ) ( )

max 01.32I IG G  à v = v(e)   0.52 ct; puis, G(I) décroit 

rapidement vers zéro lorsque v s’approche de ct. En accord avec des 

expériences, la valeur v(e) correspondant au maximum de la force d’extension 

de fissure est identifiée à la vitesse terminale des fissures sous tension, observée 

dans la fissuration des matériaux fragiles. Aucune référence n’est faite à la 

célérité d’ondes de Rayleigh. Dans le régime de vitesse transsonique (ct < v < cl), les 

fonctions caractéristiques de fissure sont identiques en forme à celles du régime 

subsonique. Cependant, pour v < ct√2, nous montrons que les lèvres de la 

fissure, écartées sous charge avant le départ de la fissure, tendent à se 

refermer en cours de mouvement ; ceci suggère que le mouvement est inhibé. 
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Pour v > ct√2, le mouvement de la fissure devient possible. En mode II de 

sollicitation et dans le régime de vitesse subsonique (v < ct), G(II) croit 

continûment avec v (quand v < cR) à partir de la valeur calculée dans le cas 

statique 
( )

0

IIG (v = 0); lorsque v tend vers cR, G(II) croit beaucoup plus 

rapidement. Au-dessus de cR (cR < v < ct), le déplacement relatif des lèvres de 

la fissure, formé sous charge avant le départ de la fissure, se referme en cours 

de mouvement ; ceci indique que le mouvement de la fissure est entravé. La 

vitesse des fissures en mouvement uniforme est limitée par la vitesse d’ondes 

de Rayleigh. Dans le régime de vitesse intermédiaire (ct < v < cl), les fonctions 

de fissure sont similaires en forme à celles en dessous de cR. Le mouvement de 

la fissure devient possible. 
 

Mots-clés : mécanique de la rupture, élasticité linéaire, propagation et arrêt 

de fissure, dislocation, force d’extension de fissure. 

 

 

I - INTRODUCTION 

 

In several works, we have analysed cracks in elastic solids under different types 

of applied loading:  

 tension, shear and tension + shear in (a) homogeneous media [1 – 7] 

and (b) bi-materials (interface cracks) [8 - 10], 

 compression and flexion [11, 12], 

 contact pressure of a cylinder on a flat boundary [13]. 

 

The methodology of analysis is invariably the same: the crack is represented 

by a continuous distribution of infinitesimal dislocations. Explicit expressions 

of the elastic fields (displacement and stress) of the dislocations are first given; 

those due to the crack are then obtained by superposition. We consider large 

cracks corresponding to fracture propagation over macroscopic distances. The 

methodology is conceptually simple. Mathematically, the main difficulty is the 

determination of the dislocation elastic fields. The dislocations are rectilinear 

for planar straight-fronted cracks and sinusoidal for non-planar plane fronted 

cracks. For an observer in the laboratory reference system, the analysis applies 

mainly to static cracks under load. It is tempting to extend the analysis to 

moving cracks with the aim of describing various aspects of the fracture of 

materials by starting directly with explicit expressions of the dislocation elastic 

fields. In the present study, one of the simplest movements is analyzed: the 

uniform rectilinear motion of a planar crack with a straight front. The model is 

illustrated in Figure 1. The medium is isotropic, elastic and infinitely extended, 

to which is attached a Cartesian system 
ix . It consists of a crack in 

1 3Ox x of 
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finite extension along 
1x  with a straight front parallel to 

3x . The crack is under 

load; initially, it is static and extends from 
1x a   to a. At a given time taken 

as t = 0 and load a

ij , it starts moving at constant velocity v. Its extension after 

time interval t is given by 1x c a vt   . We shall consider separately uniform 

tension 22

a (mode I ) and shear 21

a (mode II ) applied at infinity. 

 

 
 

Figure 1 : Planar straight-fronted crack in uniform motion at velocity v from 

initial spreading 1x a  (t = 0) to 1x c a vt    after time interval t. 

Uniform applied stresses at infinity 22

a (mode I loading) and 21

a

(mode II) are considered separately; see the text 

 

The crack is represented by a continuous distribution of infinitesimal 

dislocations parallel to 
3x  with Burgers vectors (0, ,0)Ib b for the mode I 

loading and ( ,0,0)IIb b  for mode II. Dislocation distributions 
JD (J= I and II) are 

defined such that ' '

1 1( )JD x dx  represents the number of dislocations J in the 

infinitesimal
1x  interval '

1dx  located about the 
1x  spatial position '

1x . In the 

Section 2 (Methodology), the method adopted to calculate the dislocation 

elastic fields (displacement and stress) is presented first; then, the crack 

analysis is explained in order to reach physical quantities such as 
JD , relative 

displacement 
J of the faces of the crack, crack-tip stress ( )J

ij  and crack 

extension force ( )JG . The results are collected in Section 3. Section 4 and 5 are 

devoted to the discussion and conclusion, respectively.  
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II - METHODOLOGY 
 

II-1. Elastic fields of uniformly moving straight dislocations 
 

 
 

Figure 2 : Infinitely long straight dislocation J parallel to 
3x travelling 

uniformly at constant speed v in the x1- direction, with Burgers 

vector Jb  directed along x1 (J = II) or x2 (J = I) 

 

We are concerned with the determination of the displacement and stress fields 

( ( )Ju , ( )( ) J ) of straight edges parallel to 
3x  in uniform motion along 

1x in the 

1 3Ox x  plane (Figure 2). The two types (J = I and II ) of dislocation considered 

have Burgers vectors Jb parallel to x2 and x1, respectively. The dislocations are 

located at the origin when t = 0 and at spatial x1- position '

1x vt after 

incremental time t. We shall make use of the displacement ( , )mu x t (see (2) 

below) to a prescribed plastic distortion ( , )ij x t  given as a periodic function of 

coordinates and time 
 

( . )i t k x

ij ij e
                                                                                                     (1) 

 

where 1 1 2 2 3 3.k x k x k x k x   ; in the above expression, 
ik  and ω are arbitrary 

constants and ij   are arbitrary functions of  
ik  and ω. Mura [18, 19] has shown 

the associated displacement component to be  
 

( . )( , ) i t k x

m l klji mk iju x t ik C L e     .                                                                       (2) 

 

For isotropic material,  
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 
  

2 2

2 2 2 2

( 2 ) ( )

( 2 )

km k m

mk

k k k
L

k k

     

    

   


  
                                                   (3) 

 

where 2 2 2 2

1 2 3k k k k    and  

 

klji kl ji kj li ki ljC         ,                                                                       (4) 

 

ij  being the Kronecker delta and λ and µ are Lamé’s constants. The plastic 

distortions ( ) ( , )J

ij x t  associated to the dislocations J (J= I and II ), Figure 2, are  

 

       ( ) ( )

12 21 1 2 2 1( ) ( ) ( ) ( )I II

JI JII JI JIIb x vt H x x H x vt                 

                                    1 1 2 2( )( )

1 2

i k y k xJ e dk dk
 



 

                                                 (5) 

 

with  *( ) 2

2 1( / 4 ) / /J

JI JIIib k k      , the other components of the plastic 

distortions are zero; δ and H are the Dirac delta and Heaviside step functions, 

respectively; 
1 1y x vt  . ( )J

ij  (5) appear to be superpositions of wave 

expressions of the form ij  (1). Therefore, the associated displacements ( )Ju

are similar superpositions of the displacement u (2). We may write 
 

1 1 2 2( )( ) *( )

12 1 2( , )
i k y k xJ J

m l kl mku x t ik C L e dk dk
 



 

    .                                             (6) 

 

Useful relations are 
 

      ( ) ( ) ( )

1 1 2

II II I

m m mu u u
x y x

  
  

  
.                                                                      (7) 

 

The stress fields ( )( ) J can be obtained by differentiating the displacements 

(6). Our calculation results are displayed in Section 3.  

 

II–2. Crack analysis  
 

The analysis methodology consists in representing the crack (Figure 1) in 

mode J (J = I and II) by a continuous distribution of dislocations J as 

introduced in Section1. To obtain the dislocation distribution functions DJ at 

equilibrium, one may ask that the faces of the crack be traction free, or that the 

total force along x1 at any point PC of the crack dislocations be zero. The 

following equations are reached   
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 ( ) ( ) ' '

22 21 22 21 1 1( ) 0

c

a a I II

JI JII JI JII J

c

D x dx       


    .                                        (8) 

 

( )

22

I  and ( )

21

II are the stresses at PC due to the dislocations I and II located at 
'

1x  along the x1 direction. (8) gives two integral equations, the resolutions of 

which, yield the DJ. The relative displacement of the faces of the crack are 

obtained by integration from the relation ' '

1 1( )J Jd bD x dx   : 

 

1

' '

1 1 1( ) ( )

c

J J

x

x bD x dx   , 1x c .                                                                          (9) 

 

The total stress ( )( ) J at arbitrary position 
1 2 3( , , )P x x x in the fractured medium is  

 

       ( ) ( ) ( ) ' ' '

1 1 2 3 1 1( ) ( , , ) ( )

c

J J a J

ij ij ij J

c

P x x x x D x dx  


   ;                                      (10) 

 
( )J a

ij  are zero except ( )

22 22

I a a   and ( )

21 21

II a a  ; from (10), one can obtain 

the crack-tip stresses. The crack extension force keeps its definition and is 

calculated in the same way as in the absolute reference frame of the laboratory 

on a quasi-static crack under load (see [20]). To be convinced, it suffices to 

place oneself in the inertial reference frame traveling with the crack front; the 

laws of movement remain unchanged in any inertial reference frame. The 

elastic fields are seen to depend on the spatial coordinates y1 and x2 only. Our 

definition of the crack extension force is stated as follows: “A crack of length 

l is considered at equilibrium under load (use Figure 1 for illustration). Then, 

this crack grows steadily over a short distance from one of its ends while the 

other end remains fixed. A work associated with a newly created surface 

element s  is then calculated, which is the product of the elastic force on the 

element (just before the motion of the crack tip) by the relative displacement 

of the faces of the newly created crack through s . This energy is then divided 

by s  ; the limit G(J) taken by the ratio of that energy divided by s  when the 

latter tends to zero is by definition the crack extension force per unit length of 

the crack front at the point P ahead of the crack-tip where s is located.” . To 

account for the energy released when both tips of the crack move, we multiply 

the crack extension force by 2.  
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III - RESULTS 
 

III-1. Elastic fields of straight edges in uniform motion 
 

III-1-1. Subsonic velocity regime (v < ct) 
 

This regime corresponds to v < ct where ct is the velocity of transverse sound 

wave. We have  

 

 ( ) 2 2 2 2 2 2 2

1 2 1 2 2 1 22
ln( ) / ( / ) ln( )

2

J

m l JI m l JII m l t t t

t

b
u y P x P P P P y P x

v
   


      

                       1

1 2 1 2 2 12 tan /JI m JII m l JI m JII my x P            

                                   2 1 2

2 1 2 1 22 tan / /t t JII m JI m tP y x P P        ;                (11) 

      /t tv v c , 2 21t tP v  , 2 2

2 1 / 2t tP v  ; 

      /l lv v c , 2 21l lP v  ; 

 

the subscript m takes the values 1 and 2 and cl is the velocity of longitudinal 

sound wave. In the logarithm, x2 and y1 stand for dimensionless variables. Other 

displacement components are zero. Associated stresses involved in crack 

analyses are 

  

      
2 2

( ) ( ) 2 2
22 21 12 2 2 2

1 2

2I II t JI t JII
JI JII

t t t t

P Pb
y

v y P x P P

 
   



  
       

 

                                               
2

2

2 2 2

1 2

1 t
JII l JI

l l

P
P

y P x P
 

 
       

, 

      
 

4
( ) 2
21 22 2 2 2 2 2 2

1 2 1 2

2I l t

t l t t

P Pb
x

v y P x P y P x






 
  
  
 

.                                             (12) 

 

III-1-2. Intermediate (transonic) velocity regime (ct < v < cl) 
 

We obtain for the displacements 

 

 
2

( ) 2 2 2

1 1 2 12 2

21
ln

2 1

I t
l

t l t

vb
u y P x H

v P v

 
   
  

, 

 
2

( ) 1

2 2 1 1 2 22 2

2
2 tan / sgn( )sgn( )

2 1

I t
l

t t

vb
u Px y y x H

v v

 
   

 
;                        (13) 
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    ( ) 1 2

1 2 1 1 2 12
2 tan / 2 sgn( )sgn( )

2

II

l t

t

b
u Px y v y x H

v

   , 

 
2

( ) 2 2 2

2 1 2 12 2

2
ln

2 1

II t
l l

t t

vb
u P y P x H

v v

 
   
  

;                                                (14) 

 

sgn( ) /i i ix x x . H1 and H2 take values according to spatial regions as 

a) 1

2
2

0
1t

y
x

v
 


:   H1= π/ 2 and H2= 0, 

b) 1

2
2

0
1t

y
x

v
 


:   H1= π/ 4 = H2, 

c) 1

2
2

0
1t

y
x

v
 


:   H1= 0 and H2= = π/ 2.                                            (15) 

 

These regions are illustrated in the plot of the relation 2

2 1 / 1tx y v   in 

Figure 3. Associated stresses are 

 

 
 

Figure 3 : Plot of the relation 2

2 1 / 1tx y v   for 2 1 1/ 2tv   at the 

dislocation J location 
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 
 

2

( ) 1
22 2 2 2 2 2

1 2

2

2 1

tI

t l l t

b v y

v P y P x v

 





 
  

      2 2

1 2 1 2 1sgn 1 1t ty x v y x v y       
  

, 

 2

( ) 1
21 2 2 2 2 2

1 2

22

4 1

tII l

t l t

vP yb

v y P x v






 
 
  

 

        2 2 2 2

1 2 1 2 1sgn 1 2 1t t t ty v x v y v x v y        
  

.                  (16) 

 

III-1-3. Supersonic velocity regime (cl < v) 
 

We restrict ourselves to the dislocation I only.  
 

2
( )

1 1 32 2 2

2 2

2 1 1

I t

t t l

vb
u H H

v v v

 
  
   

, 

2
( )

2 1 2 2 42 2

2
sgn( )sgn( ) 2

2 1

I t

t t

vb
u y x H H

v v

 
  

 
;                                             (17) 

 

H3 and H4 take constant values according to regions as 

a) 1

2
2

0
1l

y
x

v
 


:   H3= π/ 2 and H4= 0, 

b) 1

2
2

0
1l

y
x

v
 


:   H3= π/ 4 = H4, 

c) 1

2
2

0
1l

y
x

v
 


:   H3= 0 and H4= = π/ 2.                                            (18) 

 

III-1-4. Special velocities (v = ct and v = cl ) 
 

For v = ct : 

    ( ) 2 2 2

1 1 * 2 2 1
2

*

1
ln 1

2 1

I b
u y c x x y

c
 



 
    
  

, 

( ) 1 2 2
2 *

1

tan 1I xb
u c

y

  
   

 
;                                                                        (19) 
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( ) 1 2 2
1 * 2 1

1

tan 1 ( ) ( )II xb
u c bH x H y

y

  
   

 
, 

     ( ) 2 2 2 2

2 * 1 * 2 2 11 ln 1
2

II b
u c y c x x y 


     ;                                   (20) 

/t lc c c  , 2x is dimensionless.  

( ) 1
22 2 2 22

1 * 2*
(1 )1

I yb

y c xc





 

 
, 

2

*( ) 1
21 2 12 2 2

1 * 2

2 1
( ) ( )

(1 )

II
b c y

b x H y
y c x


  




 

 
.                                     (21) 

 

For v = cl: we give the displacement for the dislocation I only  
 

2 2
( ) * *
1 5 2 1

2

*

2
2 ( )

2 1

I bc c
u H x y

c
 







 
   
  

, 

 
 

2

*( )

2 1 2 62

*

1 2
sgn( )sgn( )

2 1

I
b c

u y x H
c 





;                                                            (22) 

 

H5 and H6 are constants in different domains : 

a)  1

2
2

*

0
1

y
x

c
 


:   H5= π/ 2 and H6= 0, 

b)  1

2
2

*

0
1

y
x

c
 


:   H5= π/ 4 = H6, 

c)  1

2
2

*

0
1

y
x

c
 


:   H5= 0 and H6= = π/ 2.                                           (23) 

 

III-2. Moving cracks in mode I loading 
 

III-2-1. Subsonic velocity regime (v < ct) 
 

The dislocation distribution DJ is given by (8) making use of (12). We obtain 
 

22 1
1 ( ) 2 2

1 1

( )
a

I I

x
D x

C c x







           ( 1x c a vt   );                                        (24) 

 

 2

( )

1 2

2 1 1tI

t t l

b v
C

v P P





  
  

 
.                                                                            (25) 
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The relative displacement of the faces of the crack from (9) is : 
 

2 222
1 1( )

1

( )
a

I I

b
x c x

C





  .                                                                                (26) 

We use (10) and (12) to calculate the total stress ( )

22

I ahead of the crack tip at 

1x c ; substituting 
1x c s  , 0 s c  , we obtain after integration 

 

( )

22

1
( )

2

I IK
s

s



 ;                                                                                        (27) 

 

22

a

IK c  . The crack extension force G(I) per unit edge length as defined 

in Section 2.2 is   
 

2
( )

( )

14

I I

I

bK
G

C
 .                                                                                               (28) 

 

At t= 0 and v= 0, G(I) reduces to  
 

2
( )

0

0

(0)

4

I IbK
G

C
                                                                                                 (29) 

 

where 
0 / 2 (1 )C b     and 22(0) a

IK a  . We can write 

( ) / /t t t tc a a v c t a v d   ; then, the normalized quantity ( ) ( ) ( )

0/I I IG G G  is 

reported in Figure 4 as a function of tv  for 1td  , in other words, when a 

transverse sound wave emitted at the tip of the crack of length 2a travelled a 

distance equal to half the initial crack length. ( )IG increases with tv  from the 

value 1 ( 0tv  ) up to a maximum ( )

max 1.32IG   located at about 
( ) 0.52e

tv  ; 

then it decreases to zero as tv  tends to 1. ( )IG is continuous. The condition for 

the maximum for ( )IG  with respect to tv  is given by ( ) / 0I

tG v    and this is 

satisfied when  

 

 2 2 2 2 2

*(1 ) (2 ) ( ) ( ) (2 ) (1 )t t t t t l t l l t t l t t t t td v v v PP Pc P P P P P v d v d v         

2 2 2 2 2 2 2 2 2 2 4 2 4

* *4 4 2(1 ) 2 (1 ) 0t l t t l l t t l t tP P v P P P v c v P v c v            .            (30) 
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Figure 4 : Normalized crack extension force 
( ) ( ) ( )

0/I I IG G G ( 28, 29) versus 

/t tv v c  in subsonic velocity regime 0 / 1t tv v c   . The curve 

corresponds to / 1t td c t a  ; 1/ 3   

 

III-2-2. Intermediate velocity regime (ct < v < cl) 
 

The relation (8) reads 

 

( ) ' ' '

22 22 1 1 2 3 1 1( , 0, ) ( ) 0

c

a I

I

c

x x x x D x dx 


     

where with (16) 
 

2( )
( ) ' ' '2
22 1 1 2 3 1 1 1 1' 2 2

1 1

( 2)
( , 0, ) sgn( ) ( )

1

I
I t

t t

b vC
x x x x x x x x

x x v v


 


     

 
; 

2 2
( )

2
2 2

( 2 )

1

I l

l l

b v c
C

v v









.                                                                                       (31) 

 

For 2 2tv  , ( )

22

I  (16) is identically zero, not only on the fracture surface, but 

everywhere in the fractured medium. Under such conditions, the condition (8) 

gives no information on DI and cannot be satisfied when 22 0a  , suggesting 

that no uniform motion is possible under an applied tension stress. Now, 

assuming 2 2tv  , (8) becomes 

 
2' '

( ) ' ' ' '1 1
22 2 1 1 1 1 1 1' 2 2

1 1

( 2)( )
sgn( ) ( ) ( ) 0

1

c c

a I tI
I

c ct t

b vD x dx
C x x x x D x dx

x x v v


 

 


    

 
  .    (32) 

 

(32) differs from the familiar form corresponding to a static crack by the third 

integral term with the Dirac delta function δ. We suggest that this term is zero 
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as follows. For '

1 1x x , it is zero; about x1, the integral may be written                    

(0 < ε small real number) 
 

1

1

' ' ' '

1 1 1 1 1 1 1sgn( ) ( ) ( ) ( ) sgn( ) ( ) 0

x

I I

x

x x x x D x dx D x y y dy

 

 

 



 

      ,                    (33) 

 

because sgn(y)δ(y) is odd function. The usual form is recovered, 
 

'
( ) '1

22 2 1'

1 1

( )
0

c

a I I

c

D x
C dx

x x




 
 . ( 2 2tv  )                                                             (34) 

 

This leads to familiar relations (24), (26) and (27) in which ( )

1

IC  (25) is replaced 

by ( )

2

IC  (31). It is tempting to include the crack extension form (28) as an 

indicative estimate, but this not clearly established. The results are collected: 

 

22 1
1 ( ) 2 2

2 1

( )
a

I I

x
D x

C c x







;  2 222

1 1( )

2

( )
a

I I

b
x c x

C





  ; 

2
( )

( )

24

I I

I

bK
G

C
 .              (35) 

 

Figure 5 reports ( )

2/ Ib C  (31) as a function of /l lv v c . This quantity is 

negative and decreases with lv  for 2lv c ; it is positive above 2lv c

and decreasing with lv . The observed discontinuity is at 2lv c . We stress 

that a similar analysis can be performed when tv c  starting from (34) with 
( )

2 ( )I

tC v c given by (31).  

 

 
 

Figure 5 : Quantity ( )

2/ Ib C   ( 31) as a function of /l lv v c in intermediate 

velocity regime 1lc v   ; /t lc c c  , 1/ 3   
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III-3. Moving cracks in mode II loading 
 

III-3-1. Subsonic velocity regime (v < ct) 
 

The condition (8) becomes 
 

( ) ' ' '

21 21 1 1 3 1 1( ,0, ) ( ) 0

c

a I

II

c

x x x D x dx 


    

where with (16) 

 
( )

( ) 1
21 '

1 1

II
II C

x x
 


; 

4
( ) 2
1 2

2 ( )II t l t

t t

b PP P
C

v P






 .                                                                                  (36) 

 

Defining 4

2w t l tR PP P  , ( )

1

IIC  cancels under the condition 0wR  . This 

condition can be managed to read 
 

6 4 2 2 28 8 (3 2 ) 16(1 ) 0t t tv v v c c       .                                                           (37) 

 

This equation determines Rayleigh wave speed [21]. Hence, a crack dislocation 

II travelling at the Rayleigh wave speed cR produces zero stress ( )

21

II on the         

x2 = 0 fracture plane. The equilibrium condition (8) can’t be fulfilled for 

21 0a   suggesting no steady motion under such conditions. Except for the 

Rayleigh wave speed, we obtain similarly as for the mode I loading 

 

      21 1
1 ( ) 2 2

1 1

( )
a

II II

x
D x

C c x







,   2 221

1 1( )

1

( )
a

II II

b
x c x

C





  ; 

      ( )

21

1
( )

2

II IIK
s

s



 ,   21

a

IIK c  ; 

2
( )

( )

14

II II

II

bK
G

C
 ,    

2
( ) ( )

0

0

(0)
( 0)

4

II II IIbK
G G v

C
   ,   21(0) a

IIK a  .            (38) 

 

The reduced quantity 
( ) ( ) ( )

0/II II IIG G G  is reported in Figure 6 as a function 

of tv  for 1td  .  
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Figure 6 : Reduced crack extension force 
( ) ( ) ( )

0/II II IIG G G  (38) versus tv  in 

subsonic velocity regime. The curve corresponds to 1td  ; 1/ 3  . 

A vertical asymptote is observed at the Rayleigh wave speed cR 

 
( )IIG  increases continuously with tv  (below the Rayleigh wave speed) from the 

value 1 ( 0tv  ) ; the increase is very pronounced when one approaches cR. 

Above cR, ( )IIG  is negative and increases to zero with tv .  

 

III-3-2. Intermediate velocity regime (ct < v < cl) 
 

Similarly, as for the corresponding mode I case, it may be written from 

condition (8) 

 

      ( ) ' ' '

21 21 1 1 3 1 1( ,0, ) ( ) 0

c

a II

II

c

x x x D x dx 


   ; 

      
( )

( ) ( ) ' '2
21 3 1 1 1 1'

1 1

sgn( ) ( )
II

II IIC
C x x x x

x x
    


; 

      
2 2

( )

2 2

2 1 lII

l

bc v
C

v





 
 ,     

2
( )

3
2 2

(2 )

1

II t

t t

b v
C

v v









.                                             (39) 

 

Then, follows the integral equation for DII   
 

' '
( ) ( ) ' ' ' '1 1

21 2 3 1 1 1 1 1 1'

1 1

( )
sgn( ) ( ) ( ) 0

c c

a II IIII
II

c c

D x dx
C C x x x x D x dx

x x
 

 

    
  .               (40) 

 

The third term with ( )

3

IIC  cancels for 2 2tv   but as shown for the similar mode 

I equation (32), this term cancels whatever the velocity v. Again, the familiar 

form is reached 
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'
( ) '1

21 2 1'

1 1

( )
0

c

a II II

c

D x
C dx

x x




 
 ;                                                                         (41) 

 

with associated quantities as in (38). For 2 2tv  , the crack extension force is 

given by the form G(II) (38) in which ( )

1

IIC  is replaced by ( )

2

IIC  (39). On Figure 7 

is reported 
2 ( )

22 / IIbc C  as a function of 
lv . It increases continuously with 

lv . A 

vertical asymptote is present at 1lv  .  

 

 
 

Figure 7 : Quantity 2 ( )

22 / IIbc C  (39) as a function of 
lv  in intermediate 

velocity regime 1lc v   ; mode II loading, 1/ 3   

 

 

IV - DISCUSSION 
 

IV-1. Dislocations 
 

The determination of the elastic fields of dislocations in motion may be 

performed by two general methods called “Method of Fourier series or 
integrals” and “Method of Green’s functions” in review works by Mura [18, 19]. 
The first method, especially powerful for many cases, is the one adopted in the 

present study (Section 2.1); it has been used to obtain the elastic fields of a 

dislocation oscillating in the form of a standing wave [2], for example. Earlier 

studies of dislocations in uniform motion are referenced by Eshelby [22]. The 

results listed in Section 3.1 cover the broad values of the dislocation velocity, 

from subsonic (v < ct) to supersonic (cl < v). A remarkable difference of the 

elastic fields of moving dislocations, as compared to static ones, is the presence 

in their stress fields of singularities of the type of the Dirac delta function, along 

lines crossing transversely the dislocation, when the velocity v is larger than 

the velocity of transverse sound wave; these lines are illustrated in Figure 3. 

Another observation is that the elastic fields, measured by an observer in an 
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inertial reference frame moving with the dislocation, are like those of a static 

dislocation in the laboratory, particularly in the subsonic regime. This allows 

to describe static and uniformly moving cracks in a similar way.   

 

IV-2. Mode I loaded cracks  
 

In the subsonic regime, the crack-tip characteristic functions are similar in form 

with those of a static crack. They depend on v through ( )

1

JC  (J= I and II) and         

c = a + vt; when v = 0 and vt = 0, the static case is recovered. A special behaviour 

observed by experimentalists is as follows: an initial static crack ( 1x a , when 

using Figure 1 as illustration) is under load in tension (mode I); at a given time 

taken as t = 0, it starts to move. It is found experimentally that the crack velocity 

increases gradually to a constant terminal velocity. This property of tensile 

cracks is captured on micrographs by Kerkhof and Richter [23], Figure 8.  

 

 
 

Figure 8 : Micrograph by Kerkhof and Richter [23] showing a crack with 

initial edge length c0 moving (from left to right) with a velocity 

increasing gradually to reach the terminal velocity. The vertical bright 

lines are the crack front positions captured at identical time interval. 

The terminal velocity corresponds to equal distance between the lines at 

the end right. The specimen length is 180 mm. See [23] for details 

The existence of a terminal velocity for tensile cracks in brittle materials is 

widely acknowledged [24, 25]. This suggests that the quasi-static 

configuration, corresponding to small v in spatial region located about c0 in 

Figure 8, is not an equilibrium one. Subsequent question is: can this terminal 

velocity be predicted? Interestingly, the answer is yes, from Figure 4. The 

terminal velocity is 
( )e

tv corresponding to the maximum value 
( )

max

IG of the 

reduced crack extension force. The condition to be satisfied is 
( ) / 0I

tG v    

and this is given by (30). The fact that 
( )IG  increases with crack velocity v from 

zero up to a maximum has an important implication for a macroscopic crack 
(by “macroscopic”, we mean that fracture over large distance is under way) under 

load in an elastic solid. The Griffith condition G(I) = 2γ (γ, surface energy) should 

be applied at the terminal velocity and not at v = 0 as commonly proceeded in 
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laboratory experiments. Under the conditions of Figure 4, 
( ) 0.52e

tv   and 

( )

max 1.32IG  , in isotropic materials with Poisson ratio ν= 1/3. This corresponds 

to experiments (see [24], for example); above that velocity, crack branching is 

observed and this is explained by the rapid decrease to zero of the crack 

extension force 
( )IG . Because the driving force 

( )IG is becoming small, the 

moving crack looks for an alternative to propagate rapidly. We now refer to the 

overview of dynamic fracture mechanics by Freund [25] in support of our 

findings. In mode II loading, the crack extension force expression 
( )IIG (38) is 

the same displayed there (see relation (5.3.10) in [25]). The corresponding 

expression for mode I exhibits the function Rw (see in the text about (36)) in 

[25], in contrast to our relation (28). However, we have checked that both 

expressions are identical for small v. An attempt to derive the terminal velocity 

expression is presented by Lawn [24]; this makes use of Mott [26] extension 

of the Griffith concept to dynamic fracture. The estimated value falls well 

below the Rayleigh wave velocity and closer to our findings. From its 

maximum value, 
( )IG  decreases continuously to zero at v = ct (Figure 4). This 

contrasts with many who argue that the theoretical limiting speed of a tensile 

crack must be the Rayleigh wave speed (see [25, 27], for example). In the 

transonic velocity regime (ct < v < cl), the crack functions (35) are identical in 

form with those of the subsonic regime; however, contrary to the latter where 
( )

1

IC is positive, ( )

2

IC (or equivalently ( )

21/ IC ) changes sign in the former 

(Figure 5). For 2lv c , ( )

2

IC is negative. Mathematically, one can transfer 

the minus sign to the tensile applied stress 22

a  and write, for example,  

 

2 222
1 1( )

2

( )
( )

a

I I

b
x c x

C







  .                                                                            (42) 

 

The corresponding physical interpretation is that over 1x c , an ellipse of 

material has been removed so that under the action of a compressive applied 

stress (- 22

a ), the two faces of the elliptical hole close, but remain stress free. 

In fact, at t = 0, just before crack motion, the crack shape is elliptical. The 

action of the velocity in this region is to close the crack under movement; this 

suggests that the motion of the crack is inhibited. For 2lv c , ( )

2

IC  becomes 

positive, suggesting possible motion of the crack.  
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IV-3. Mode II loaded cracks  
 

Physical quantities associated to the crack are given in (38) in the subsonic 

speed regime (v < ct), except at the Rayleigh velocity cR. As can be seen from 

Figure 6, ( )

1

IIC is negative above cR. A relation like (42) can be written 

 

2 221
1 1( )

1

( )
( )

a

II II

b
x c x

C







  .                                                                             (43) 

 

A similar suggestion in discussing (42) is applied here: the motion of the crack 

is impeded in the velocity interval cR < v < ct. Rayleigh wave velocity appears 

to be the limiting speed of a moving crack under mode II loading in the 

subsonic regime. In the intermediate regime (ct < v <cl), the crack functions 

are similar in form to (38) with ( )

2

IIC replacing ( )

1

IIC . Because ( )

2

IIC is positive 

(Figure 7), the crack motion is possible.  

 

 

V - CONCLUSION 
 

An analysis is made of planar cracks located in the Ox1x3 – plane with a straight 

front parallel to x3 in isotropic materials. The crack fronts travel along x1 with 

a constant velocity v under mode I and II loadings. Cracks are represented by 

a continuous distribution of uniformly moving straight edge dislocations 

parallel to x3 with Burgers vectors Jb  directed along x1 (J = II) or x2 (J = I), 

according to the loading mode J. Explicit expressions of the elastic fields 

(displacement and stress) of the crack dislocations are first given for velocities, 

from zero to values larger than cl, the velocity of longitudinal sound wave. 

Then, crack physical quantities are given, namely the dislocation distribution 

function DJ, the relative displacement ϕJ of the faces of the crack, the crack-tip 

stresses and the crack extension force G(J) per unit length of the crack front. 

These results cover the velocity range [0, cl]. In mode I loading and in the 

subsonic velocity regime (v < ct, the velocity of transverse sound wave), G(I) 

increases continuously with v from the value in the static case ( )

0

IG (v = 0) to a 

maximum ( ) ( )

max 01.32I IG G  at v = v(e)   0.52ct (Figure 4); then, G(I) decreases 

rapidly to zero when v tends to ct. The value v(e) corresponding to the maximum 

of the crack extension force is identified to the terminal tensile crack velocity, 

experimentally observed in the fracture of brittle materials.  No reference is 
made to the Rayleigh wave velocity cR. In the transonic speed regime (ct < v < cl), 
the crack characteristic functions (35) are identical in form with those of the 

subsonic regime. However, for v < ct√2, it is shown that the faces of the crack, 
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separated under load before the extension of the crack, close under motion; this 

indicates that the crack movement is hindered. for v > ct√2, the motion of the 

crack is possible. In mode II loading and in the subsonic regime (v < ct), G
(II) 

increases continuously with v (when v < cR) from the calculated value in the 

static case ( )

0

IIG (v = 0); when v approaches cR,  G(II) increases very rapidly 

(Figure 6). Above cR (cR < v < ct), the relative displacement of the faces of the 

crack, formed under load before crack motion, closes in movement; this 

indicates that crack motion is impeded. The velocity of uniformly moving 

cracks is limited by the Rayleigh wave velocity. In the intermediate speed 

regime (ct < v < cl), the crack characteristic functions are similar in form to 

(38) with ( )

2

IIC  (39) replacing ( )

1

IIC  (36). Because ( )

2

IIC  is positive (Figure 7), 

the movement of the crack is possible.  
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