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ABSTRACT 
 

This study considers a three-dimensional brittle elastic half-space on the flat 
Ox1x3- plane boundary of which an infinitely long cylinder lies along the Ox3- 

contact line. Under the load P (per unit length) exerted by the cylinder along the 

x2- direction, fracture propagates over large distance. The expected crack is planar 

with a straight front parallel to x3, inclined with respect to x1x3 by an angle θ. It is 

expected that this angle compares well with the Hertzian conoidal crack angle 

produced by a spherical indenter at large distance from the indenter. The analysis 

of the fractured medium involves the applied stress fields; in addition to the 

stresses due to the cylinder by itself, the induced normal stresses originating from 

the Poisson’s effect are considered. In this way, the x2- component of the applied 

force is zero everywhere on the free surface except along the contact line. To 

express the stresses induced by the crack, the latter is represented by a continuous 

distribution of two straight edge dislocation families, parallel to x3, with Burgers 

vectors along x1 and x2. The stress fields due to these dislocations, as well as those 

of a straight screw dislocation parallel to x3, have been determined by a method 

involving Galerkin vectors; these results are in complete agreement with those 

obtained in previous works using different methods. The distribution functions of 

the crack dislocations under load at equilibrium satisfy a system of two integral 

equations with Cauchy-type singular kernels. Approximative solutions are 

proposed, developed in series involving the Chebyshev polynomials of first kind, 

the coefficients of which are evaluated numerically. Expressions of the relative 

displacement of the faces of the crack, crack-tip stresses and crack extension force 

G per unit length of the crack front are given. G displays a maximum at an angle 

θ that is confronted to experiment. / 0G    , the condition that determines the 

crack angle, is seen to depend on Poisson’s ratio only. The expression for G is 

useful in spherical indentation fracture too. 
 

Keywords : fracture mechanics, linear elasticity, dislocations, Galerkin 

vector, singular integral equations, Poisson effect. 
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RÉSUMÉ 
 

Mécanique de la rupture dans un demi-espace élastique à trois 

dimensions sous la pression de contact rectiligne d’un cylindre  
 

Cette étude considère un demi-espace élastique fragile à trois dimensions avec 

comme surface le plan Ox1x3, sur lequel un cylindre infiniment long est couché, 

le long de la ligne de contact Ox3. Sous la charge P (par unité de longueur) 

exercée par le cylindre dans la direction x2, la rupture se propage sur une grande 

distance. La fissure attendue est plane avec un front droit parallèle à x3, inclinée 

par rapport à x1x3 d’un angle θ. On s’attend à ce que cet angle soit bien 

comparable à l’angle de fissure conoïdal hertzien produit par un indenteur 

sphérique, à grande distance de l’indenteur. L'analyse du milieu fracturé 

implique les champs de contraintes appliquées ; en plus des contraintes dues au 

cylindre lui-même, les contraintes normales induites provenant de l’effet de 

Poisson sont également prises en compte. Pour exprimer les contraintes 

induites par la fissure, celle-ci est représentée par une distribution continue de 

deux familles de dislocations coins droites, parallèles à x3, avec des vecteurs de 

Burgers suivant x1 et x2. Les champs de contraintes dus à ces dislocations, ainsi 

que ceux d'une dislocation vis droite parallèle à x3, ont été déterminés par une 

méthode impliquant des vecteurs de Galerkin; ces résultats sont en parfait 

accord avec ceux obtenus lors de travaux antérieurs utilisant différentes 

méthodes. Les fonctions de distribution des dislocations de fissure, sous charge 

à l'équilibre, satisfont un système de deux équations intégrales singulières de 

type Cauchy. Des expressions des fonctions de distribution des dislocations de 

fissure, du déplacement relatif des lèvres de la fissure, de contraintes en tête de 

fissure et de la force d'extension G de la fissure (par unité de longueur du front 

de fissure) sont données. G affiche un maximum à un angle θ qui est confronté 

à l’expérience. / 0G    , la condition qui détermine l’angle d’inclinaison de 

la fissure, dépend uniquement du module de Poisson. L’expression de G est 

également utile dans les fractures à indentation sphérique.  
 

Mots-clés : mécanique de la rupture, dislocation, vecteur de Galerkin, 

équation intégrale singulière, effet Poisson. 

 

 

I - INTRODUCTION  
 

In the present study, by “Fracture Mechanics”, it is meant a crack analysis that 

incorporates the relative displacement of the faces of the crack, crack-tip 

stresses, crack extension force G per unit edge length of the crack and fracture 

spatial extension using the Griffith concept 2G   (   is the surface energy). 

We shall look for crack configurations that maximize G. This is in these 
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configurations that the condition 2G   is applied and confronted with 

experiments. The considered crack system is depicted in Figure 1. This is a 

three-dimensional infinitely extended brittle elastic half-space on the flat 

surface of which a contact pressure is exerted by a cylinder. We assume that 

fracture propagation occurs over large distance in the medium and focus our 

attention on the crack-tip B that is moving away from the cylinder.  Hence, the 

nucleation of the crack and what happens about the cylinder is out of scope. 

Rather we seek the crack natural configuration under load through its length l 

and inclination angle θ from the medium flat boundary.  

 

 
 

Figure 1 : Brittle elastic half-space under load by a cylinder (P is the load 

per unit length of the cylinder) posed along the x3- direction on its flat 

boundary surface; a planar crack of finite extension l is present, located 

between positions A and B in the Ox1x2 - plane and inclined by angle θ from 

the planar boundary. The crack front is straight, parallel to the cylinder axis. 

Our modelling assumes the half-space to be infinitely extended and the 

cylinder and crack to run indefinitely along the x3- direction 

 

More specifically (Figure 1), with respect to a Cartesian axis system xi, the 

cylinder of infinite length (load P per unit length) is posed on the Ox3- axis. 

The crack is assumed planar with a straight front parallel to x3 and located 
(schematically) between spatial positions A (a1, a2 ,0) (may be coincident with O) 
and B (b1, b2 ,0) in the Ox1x2- plane; it is inclined by angle θ around the Ax3- 

axis with respect to x1x3. The crack of finite length l extends along x1 from            
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x1= a1 to b1= a1 + l cos θ, x2 from x2= a2 to b2= a2 + l sin θ and runs indefinitely 

in the x3- direction. The relevance of this modelling may be understood as 

follows. A slab of cylinder with thickness '

3dx  at spatial position O’ (0,0, '

3x ) 

exerts elastic fields (displacement and stress) proportional to those of a point 

load at O’ (proportionality coefficient '

3dx ). Physically, this corresponds to the 

action of a spherical indenter to which is associated a conoidal fracture surface 

for sufficiently large load (Roesler (1956) [1] as quoted by Frank and Lawn 

(1967) [2]; see also [3]). The coalescence of conoidal cracks from different 

slabs of cylinder along Ox3 would produce planar fracture surface envelops 

parallel to x3 at large crack lengths. Therefore, we expect our modelling to 

provide the experimentally observed fracture surface inclination angle θ and 

crack length l as a function of critical load P by both a spherical indenter and 

cylinder. A symmetrical crack with respect to Ox2x3 is expected to develop 

between A’ and B’. This is considered by replacing P by P/2 in the various 

expressions obtained in the analysis with only one crack; this corresponds to 

increasing the critical load at fracture in 2G  by a factor 2. As in our 

previous crack analyses (see [4 - 7], among others), the crack under load is 

represented by a continuous distribution of dislocations with infinitesimal 

Burgers vectors. The stress induced by the crack is equivalent to that produced 

by the dislocations.  

 

Two straight edge dislocation families J (J= // and  ) parallel to x3 with 

Burgers vectors / / ( ,0,0)b b  and (0, ,0)b b   parallel and perpendicular to 

the solid flat surface are considered. To a crack dislocation J located at x1 is 

associated an elevation h from Ox1x3 (Figure 1) with distribution function DJ 

such that ' '

1 1( )JD x dx  represent the number of crack dislocations J in small x1- 

interval '

1dx  about '

1x . It is required to find the equilibrium dislocation 

distributions under the combined actions of the cylinder and the crack 

dislocations. The applied stress tensor ( )A  will include the stress ( )a  due to 

the cylinder itself and the induced normal stresses due to the Poisson effect, 

namely that, to a normal stress a

ii  acting in the xi- direction also correspond 

normal stresses ( - a

ii ) in the two other  associated xj - directions. It is 

important to mention that considering the induced normal stresses due to 

Poisson effect is in fact necessary for the x2- component of the applied force 

exerted on a boundary surface element ds, at any spatial position PS of the 

three-dimensional elastic half-space flat boundary, to be zero except on Ox3 
(Section 3). Stress fields due to straight edges in half- space are available [8, 9]. 
We provide below dislocation J elastic fields from a different method involving 

Galerkin vectors with biharmonic functions in Fourier forms; a similar 
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procedure has been used to investigate the elastic fields of interfacial 

dislocations (straight and sinusoidal) [10 - 12]. In what follows, the 

methodologies for determining ( )A , dislocation stress fields
( )( ) J  and crack 

analysis are given in Section 2. In Section 3 are listed the various applied and 

dislocation stress expressions, crack dislocation distributions, crack-tip stresses 

and crack extension force. Numerical analysis and discussion form Section 4. 

Section 5 is devoted to the conclusion.  

 

 

II - METHODOLOGY 
 

II-1. Applied elastic fields 
 

The displacement corresponding to a pressure at a point on a plane boundary 

may be taken from Love [13]; we assume a slab of cylinder of thickness '

3dx , 

located at O’ (0,0, '

3x ) and acting in the x2 - direction, to produce a displacement 

corresponding to that of a pressure point multiplied by '

3dx . This gives by 

superposition the displacement au produced by the cylinder, at arbitrary 

position 1 2 3( , , )x x x , in the form 

 
' '

3 31 2 1
1 3

24 ' 4 ( ) '( ')

a dx dxPx x Px
u

r r x r   

 

 

 
   , 

' '2

3 32
2 3

( 2 )

4 ' 4 ( ) '

a dx dxPx P
u

r r

 

   

 

 


 

  , 

3 0au  ;                                                                                                              (1) 

 
2 2 2 ' 2

1 2 3 3' ( )r x x x x     and λ and μ are Lamé’s constants. The associated 

stress fields ( )a  are obtained from the displacement au by partial 

differentiation with respect to coordinates xi. As introduced in Section 1, 

induced normal stresses originating from Poisson effect are considered; hence, 

the applied stress field ( )A  has the form 
  

11 22 33 12

12 22 11 33

33 11 22

( ) 0

( ) ( ) 0

0 0 ( )

a a a a

A a a a a

a a a

    

     

   

  
 

   
   

.               (2) 

 
a

ij  are listed in Section 3. It is revealed that 33 0A  .  
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II-2. Elastic fields of straight dislocations in a half-space  
 

We consider here a three-dimensional half-space (infinitely extended elastic solid) 
with shear modulus µ and Poisson’s ratio ν. The solid occupies the region x2 > 

0 and its flat surface is Ox1x3; it contains a straight dislocation parallel to x3 and 

displaced by 2x h  from the origin (Figure 2). The dislocations concerned 

 

 
 

Figure 2 : Elastic half-space 2 0x   containing an infinitely long straight 

dislocation J parallel to x3 and displaced by 2x h  from the origin with 

Burgers vector Jb  directed along x1 (J= //),  x2 ( J ) or x3 ( J III ) 

 

are edges with Burgers vectors / / ( ,0,0)b b  parallel to x1 and (0, ,0)b b 

parallel to x2 (Figure 2). We present below a methodology for determining 

their elastic fields that is equally valid for a screw dislocation with Burgers 

vector (0,0, )IIIb b . Let ( )Ju  and 
( )( ) J be the displacement and stress fields 

in the medium due to the dislocation J (J= //, and III). Very generally, the 

following description is expected to apply: 

 The surface Ox1x3 is free from traction; at Ps (x1, 0, x3), this gives  

 
( )

12 0J  , ( )

22 0J   and ( )

23 0J  .                                                                                   (3) 
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 Far from the dislocation and free surface, the elastic fields correspond 

to those ( ( )Ju  , 
( )( ) J 

) of a straight dislocation displaced by 2x h

from the origin with Burgers vector Jb  in the whole three-dimensional 

space; hence 

 
( ) ( )J Ju u   

( ) ( )( ) ( )J J                                                                                 (4) 

 

when one moves far away in the x2- direction ( 2x h  ).  

 The elastic fields may be expressed in the form  

 
( ) ( ) ( )J J J Wu u u   

( ) ( ) ( )( ) ( ) ( )J J J W                                                                                              (5) 

 

where ( )J Wu  and 
( )( ) J W  satisfy the equations of equilibrium and 

possess the following properties. 

 
( ) ( )( ) ( )J J W

S Su P u P 
 

( ) ( )( ) ( ) ( ) ( )J J W

S SP P   ;                                                                                (6) 

 

this ensures the traction-free boundary condition (3). 

 ( )J Wu  and 
( )( ) J W  cancel far from free surface and dislocation; this 

means that  

 
( ) 0J Wu   

( )( ) 0J W                                                                                                                (7) 

 

when 2x h  ; this ensures the veracity of (4) above. 

The elastic fields ( )Ju  and 
( )( ) J  thus obtained are valuable representations to 

Figure 2. The associated ( )J Wu  and 
( )( ) J W  are investigated with the help of 

Galerkin vectors in a similar way as in our previous works [10 - 12]. We take 

Galerkin vectors 
( )JV  with only one non-zero , x1- component (//)

1V  for / /J 

, x2- component ( )

2V   for J  , and x3- component ( )

3

IIIV  for J III , with 

same form  
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( ) ( ) . ( ) .

2( ) ( ) ( )J J ik x J ik x

jV x k e k x e   ,                                                                 (8) 

 

1j   to 3 for //, ,J III   respectively, under the condition 

2 2 2 2

1 2 3 0k k k k     that ensures the biharmonicity of ( )J

jV . For ( )J

jV  to cancel 

far from the dislocation and free surface, we take 
2 2

2 1 3k i k k  . The elastic 

fields under consideration are x3- independent; hence k3 is set equal to zero. 

This leads to  

 

2 1k i k .                                                                                                          (9) 

 

The elastic fields corresponding to ( )J

jV  (8) may be first calculated (see [10], 

for example); then more general forms ( )J Wu  and 
( )( ) J W  are constructed from 

the previous ones by superposition over k1. To calculate ( )J  and 
( )J  (8), we 

use (6) for the stress and restrict ourselves to stress components involved in the 

traction-free boundary condition (3) only. 
( )( ) J 

 is taken from [4] and written 

in Fourier forms at PS. We obtain  

 

  1(//) 1
13

1

2 2 (5 4 )
2

h kiC
h k e

k
  


     ,  

  1(//) 1
1 12

1

1 2 sgn( )
2

h kiC
h k k e

k



   ; 

  1( ) 1
13

1

2 (1 4 )
2

h kiC
h k e

k
  

     ,  

  1( ) 1
1 12

1

1 2 sgn( )
2

h kiC
h k k e

k


    ; 

( ) 0III  ,  

1( ) 1 1

2

1

sgn( )

4(1 )

h kIII iD k
e

k





 


;                                                                       (10) 

 

1 / 2 (1 )C b    , 1 / 2D b  . Again with (10), ( )J Wu  and 
( )( ) J W  are 

known; the associated dislocation J elastic fields are given by (5).  

 

II-3. Crack analysis 
 

We consider one crack in the half-space, located between A and B in the Ox1x2- 

plane (Figure 1) as described in Section 1. The crack system is completely 
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defined when the dislocation distributions DJ (J= // and  ) are known. For this 

purpose, we ask the crack faces to be free from traction; this gives 

 

12 1 11

22 1 12

/ 0

/ 0

h x

h x

 

 

  


   
.                                                                                    (11) 

 

( )  is the stress at any position 1 2 3( , , )P x x x  in the medium and is linked to DJ. 

In (11), we are concerned with the point 1 2 1 3( , ( ), )CP x x h x x of the crack faces 

only. We write  

 
(//) ( )( ) ( ) ( ) ( )A       ;                                                                           (12) 

 

( )A  (2) is the applied stress ( )a  due to the cylinder including induced normal 

stresses originating from the Poisson effect; ( )J

ij  has the form  

 
1

1

( ) ( ) ' ' '

1 1 2 3 1 1( ) ( , , ) ( )

b

J J

ij ij J

a

P x x x x D x dx       (J= // and  ).                            (13) 

 
( )J

ij  is the stress produced by a dislocation J located at an elevation 
'

1( )h x  from 

the half-space boundary. (11) provides two integral equations with Cauchy-type 

singular kernels that determine the DJ. When these have been found, the relative 

displacement of the faces of the crack, crack-tip stresses and crack extension force 

are obtained by integrations (Section 3). In what follows, our calculation results 

are displayed in the order defined in the methodology Section 2.  

 

III - RESULTS 
 

III-1. Applied elastic fields  
 

The displacement au  (
2 2 2

1 2r x x  , 0r  ) obtained from (1) is : 

 

11 1 2 1
1 2

2 2

ln
2(1 2 ) 2(1 2 ) tan

2

a x r x x xP
u

x r x r
 



 
     

 
, 

2

2
2 2

2(1 ) ln
2

a xP
u r

r




 
    

 
, 

3 0au  .                                                                                                             (14) 
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Constants with infinite values are omitted. We use (14) for 2 0x  . Arguments 

in the logarithm are dimensionless. These conditions also apply for the 

corresponding stress ( )a that follows:  

 

11 12

12 22

33

0

( ) 0

0 0

a a

a a a

a

 

  



 
 

  
 
 

; 

2 2 2

1 1 2
11 2 4

2

(1 )2
(1 ) ln ,a x x xP

r
x r r


 



 
    

 
 

2 4

1 2
22 2 4

2

2
lna x xP

r
x r r


 



 
   

 
, 

2 2

1 2
33 2

2

2
lna x xP

r
x r






 
  

 
, 

2 4

1 2 2
12 2 2 4

2

(1 2 ) 2
(1 2 ) lna Px x x

r
x r r


 



 
     

 
.                                                 (15) 

 

The applied stress field ( )A  (2) becomes 

 

11 12

12 22

0

( ) 0

0 0 0

A a

A a A

 

  

 
 

  
 
 

; 

2 2 4

1 2 2
11 2 4

2

(1 2 ) (1 )2(1 )
(1 2 ) lnA x x xP

r
x r r

 
 



   
    

 
, 

2 2
22 1 2

22 2 2

2A Px x x

r r


 



 
  

 
.                                                                           (16) 

 

The traction HdF  at an arbitrary point on any surface element ds parallel to x1x3 

is given by  

 

12

22

0

a

AHdF

ds





 
 

  
 
 

.                                                                                                   (17) 
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At Ps (x1, 0, x3), the component 22

A  perpendicular to the boundary plane Ox1x3 

vanishes when 2 0x  , except at r= 0, as expected. 33 0A   is equally wanted. 

Hence, ( )A  (16) behaves adequately.  

 

III-2. Dislocation stress fields 
 

Galerkin vectors 
( )JV  (8, 10), //, andJ III  , have been used to estimate 

the dislocation elastic fields. We display below the stresses only because there 

are involved in the crack analysis.  

 
2

( ) 1 2 3 2 2 1 1 2 3
1 1 2 4 2

2 2( ) ( ) 2i i i i i i i i
ii

h h h

x h
C x

r r r

       
 

  

      
  


 

                            
 2 2 2 1 2 3

4

2( ) ( ) ( 3 ) 4i i i

h

x h x h x h h

r

   



    
  

                                                   
 2 2

2 2 1 1 2

6

4 3( ) ( )i i

h

hx x h x

r

 



  




, 

     
   2 2 2 2

2 1 2 2 2 1( )

12 1 4 4

( ) ( ) ( ) ( )

h h

x h x x h x h x h x
C

r r
 

 

      
 



 

                                                                
 2 2

2 2 2 1

6

4 ( ) ( ) 3

h

hx x h x h x

r

  




, 

     ( )

3 0j   ;                                                                                                     (18) 

     
   2 2

2 1 1 2 22 1 2 3(//)

1 2 4

2( ) ( )( ) 2 i ii i i

ii

h h

x h x x hx h
C

r r

   


 

     
  



 

        
3

2 1 2 3 1 2 3 2 2 1 2

2 6

(3 2 ) (5 2 ) 16 ( ) ( )i i i i i i i i

h h

x h hx x h

r r

       

 

      
   

           
 2 2

3 1 2

4

4 ( )i

h

h x x h

r

 



 
  

               
  2 2 2 2 1 1 2 2 2 1

4

2( ) ( ) ( ) (3 ) 6 ( )i i i i i i

h

x h x h x h hx

r

     



      
 




, 

     
 2 22 2 2 2

2 2 1(//) 1 2 1 2
12 1 1 4 4 6

4 3( )( ) ( )

h h h

hx x h xx x h x x h
C x

r r r


  

     
   
 
 

, 
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     (//)

3 0j  ;                                                                                                       (19) 

     
1 2 2 1 1 2 2 1( )

3 1 2 2

( ) ( )j j j jIII

j

h h

h x x h x x
D

r r

   


 

    
  

 
, 

     ( ) 0III

ii  , ( )

12 0III  .                                                                                    (20) 

 
In (18 - 20), δij is the Kronecker delta, subscripts i and j take values (1, 2 and 3) 

and (1 and 2), respectively; 2 2 2

1 2( )hr x x h    , 2 2 2

1 2( )hr x x h    , 

1 / 2 (1 )C b    , 1 / 2D b  . These results are in complete agreement 

with previous works [8, 9].  

 

III-3. Crack dislocation distributions 
 

With ( )A  (16) and 
( )( ) J  (18, 19), the condition (11) can be written in the form  

 
1

1

1

1

' ' '

/ / 1 1 1 / / 1 1 / / 1 1'

1 1

' ' '

1 / / 1 1 1 1 1 1'

1 1

1
( ) ( ) ( ) ( , ) 0

1
( ) ( ) ( ) ( , ) 0

b

A C

a

b

A C

a

f x D x dx D x C d x x
x x

f x D x dx D x C d x x
x x



  

  
     

 


 
      





;                           (21) 

 

/ / 12 0 11

A A Af p   , 22 0 12

A A Af p    , 0 tanp  ;                                            (22) 

 

 
1

1

' ' ' ' '

1 1 1 1 0 // 1 1 1 1 1 1( ) ( ) ( , ) ( , ) ( , )

b

C

C

a

D x dx D x C p d x x d x x d x x  
     , 

1

1

' ' '

/ / 1 1 / / 1 1 1 1( ) ( ) ( , )

b

C

C

a

D x dx D x C d x x  ;                                                                (23) 

 

'

1 1 6

'

( , )
hh

Num d
d x x




  , 

' 2 ' 4 '

1 1 0 1 1 0 1 1( ) (1 3 )( ) 12 ' ( )( ')Num d x x p x x hh p x x h h         

          2 2 2 3

0 0( ') (3 )( ') 12 ' 4 ' ( ')h h p h h hh hh p h h         , 

 
'

' ' 1 1
/ / 1 1 1 1 4

'

( )8 '( ')
( , ) ( , )

hh

x x h h h
d x x d x x




 
  , 
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  ' 3 ' 2

1 1 1 16

'

4 '
( , ) ( ') 3( ) ( ')C

hh

hh
d x x h h x x h h


      

                         ' 2 ' 3

0 1 1 0 1 13 ( )( ') ( )p x x h h p x x     ;                                   (24) 

 

2 1 0 1 0( )x h x p x h    (h0 is constant),  
'

1' ( )h h x , 2 ' 2 2

' 1 1( ) ( ')hh x x h h     .                                                           (25) 

 

We stress that d , / /d  and Cd  are continuous and bounded for 0 0p  . 

Following works by Erdogan and Gupta [14, 15] (see also [16, 17]), we propose 

to (21), the following approximate solution  
 

( )1 1
1 0 1 1 1

11

( )
( ) ( ) ( / )

A N
JJ

J n n

n

ba f b
D x D x T x ba

C




  , 
1 1x ba ;                              (26) 

 

2
2

0 1 11/D ba x  , 1 1 1 1( ) / 2x x a b   , 1 1 1( ) / 2ba b a  , and / /J   and 

 . Tn are the Chebyshev polynomials of first kind, N and the coefficients ( )J

n  

are obtained numerically (similarly as in [16], for example); this will be the 
subject of Section 4. The relative displacement of the faces of the crack in the x1- 

direction / /  and x2- direction   are given by 1 1( )J Jd bD x dx   ; this gives  

 

 ( ) 1

1 1
1 1

1

11

sin cos ( / )( )
( )

J
A N

n
J

J

n

n x babba f b
x

C n










  ,    
1 1x ba .                     (27) 

 

Here the constant of integration is set equal to zero so that 1( ) 0J ba   . Thus, 

it appears that DJ is unbounded at 1 1x ba   and the J  curve is vertical at 

these end points. This behavior is known from the study of planar cracks [18]. 

We stress that (26) is intended to capture the crack-tip characteristic functions 

at 1 1x b  only, for sufficiently large crack length l. What happens at 1 1x a  

about the cylinder (Figure 1) is out of scope; in practice, the region about the 

cylinder is associated with damage material and irreversible processes when 

fracture occurs over large distance.  

 

III-4. Crack-tip stresses 
 

In the crack plane and ahead of the crack-tip at spatial position  

1 1 2 1 3( , ( ), )CP x b s x h x x   , 0 < s << b1, the total stress ( )ij CP  is identified 

to the following formula 
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1

1 1

( ) ' ' '

1 1 1 1

//and

( ) ( ) ( )

b

J

ij ij J

J b b

s b s x D x dx


 
  

    ,   1 1b b  .                              (28) 

 

This formula means that only those dislocations located about the crack front 

in x1- interval 1 1 1[ , ]b b b  will contribute significantly to the stress at x1= b1 + 

s ahead of the crack-tip as s tends to zero; any other contribution will become 

negligible for a sufficiently small value of s. Using (26) for DJ and integrating 

(28), we obtain  

 

      
2

0 1 ( ) (//)

12 0 1 / / 12 2

0

(1 )
( ) ( ) ( )

(1 ) 2

A Ap ba
s p f b f b

p s
 




   


, 

      1 2 ( ) 2 (//)

11 0 1 0 0 / / 12 2

0

( ) (1 ) ( ) (3 ) ( )
(1 ) 2

A Aba
s p f b p p f b

p s
 

     


, 

      1 2 ( ) 2 (//)

22 0 1 0 0 / / 12 2

0

( ) (1 3 ) ( ) (1 ) ( )
(1 ) 2

A Aba
s p f b p p f b

p s
 

     


, 

      1 ( ) (//)

33 1 0 / / 12

0

2
( ) ( ) ( )

(1 ) 2

A Aba
s f b p f b

p s


 

   


, 

 3 0j  ,   j = 1 and 2;                                                                                    (29) 

 

 
(//) (//)

1

N

n

n




  ,    
( ) ( )

1

N

n

n

 



  .                                                                   (30) 

 

We mention that 1ba  can be expressed in terms of crack length l as 

2

1 0/ 2 1ba l p  .  

 

III-5. Crack extension force  
 

Our definition of the crack extension force is taken from [18] and used 

extensively (see [4 - 7, 16], for example). A crack of length l is considered at 

equilibrium under load (use Figure 1 for illustration). Then, this crack grows 

almost statically over a short distance from one of its ends (say x1= b1) while 

the other end remains fixed. A work associated with a newly created surface 

element s  is then calculated, which is the product of the elastic force                 

(using (29)) on the element (just before the motion of the crack tip) by the 

relative displacement of the faces of the newly created crack through s              
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(using (27)). This energy is then divided by s  ; the limit G taken by the ratio 

of that energy divided by s  when the latter tends to zero is by definition the 

crack extension force per unit length of the crack front at the point PC where 

s is located. We obtain at B (b1, h(b1), x3)  

 

 2 2
( ) (//)

1 / / 12

0

(1 )
( ) ( ) ( )

(1 )

A Al
G B f b f b

p










         

.                                        (31) 

 

We can write (31) in a simpler form. We pose 2 1 0 1( )x h x p x   (25) (i.e. 0 0h  ), 

a1= 0;  

 

/ / 1 / / 1

1

1 1

1

( ) ( )

( ) ( )

A A

A A

P
f x f x

x

P
f x f x

x




 






 


;                                                                                   (32) 

2

0 2

(1 )P
G

l



 


 ;                                                                                               (33) 

 

the normalized crack extension force 0( ) ( ) /G B G B G  then takes the form  

 

   
2 2

( ) (//) ( ) (//)

1 / / 1( ) ( ) ( ) ( ) ( )A AG B f b f b G B G B 

      .                           (34) 

 

Next, a numerical analysis of our approximate solution (26) is performed.  

 

 

IV - DISCUSSION 
 

The crack-tip characteristic functions at x1= b1 are known when the crack 

dislocation distributions DJ (26), equivalently the ( )J

n , have been estimated. 

This requires numerical resolution of (21). We use variables 1 1 1/t x ba                         

( ' '

1 1 1/t x ba ) under conditions 2 1 0 1( )x h x p x   and 1 0a  . Using (26), we 

can write (21) as 
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 

 

( ) (//)/ / 1
1 ( ) 1 / / 1 / /( ) 1 1 1

11

( ) (//)1
1 ( ) 1 1 1 / / 1 / /( ) 1

11

2 ( )
( ) ( ) ( ) ( ) ( ) 0

1

2 ( )
( ) ( ) ( ) ( ) ( ) 0

1

A N
A C A

n n n n n

n

A N
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n n n n n

n

f t
f b D t f b A t U t

t

f t
f b A t U t f b D t

t

 

 



  




  




      


        





;  (35) 

 

     
 2

0 1
// 1 2

0

(1 2 ) 1 2(1 ) 1
( ) ln

2

A
p t

f t
p

     
   

 
 

                             
2 2 2 4

0 0

2 2

0

1 4 (1 2 ) 2 (1 )

(1 )

p p

p

       



, 

     
2

1
1 0 2 2 2 2

0 0 0

1(1 2 ) 2 2 1 2
( ) ln

2 1 (1 )

A t
f t p

p p p

   


    
    

   
, 

     / / 1 / / 1( ) ( 1)A Af b f t  , 1 1( ) ( 1)A Af b f t   ;                                                        (36) 

 

      
1 '

' 11
( ) 1 1 0 //

'2
1 1

( )
( ) ( )

2 1

C n
n C

T tb
D t dt p d d d

t
 


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

 , 

     
1 '

' 11
/ /( ) 1 1

'2
1 1

( )
( )

2 1

C n
n C

T tb
D t dt d

t





 , 

     
1 '

' 11
/ /( ) 1 1 / /

'2
1 1

( )
( )

2 1

n
n

T tb
A t dt d

t





 , 

     
1 '

' 11
( ) 1 1

'2
1 1

( )
( )

2 1

n
n

T tb
A t dt d

t
 






 ;                                                                      (37) 

 

1nU  are the Chebychev polynomials of second kind. The convenient set of 

collocation 1t  points is given by  

 

1 cos
1

m
t

N





,  1, 2 ...m N , (-1 < 1t  < 1).                                                  (38) 

 

Using these values, (35) provides 2N linear algebraic equations in the unknown 

coefficients 
( )J

n which are easy to solve numerically. We use personal computer 

and MATLAB home license; therefore, the numerical results are qualitative. The 

precision depends on the step of integration 
'

1dt  in (37) and N; the smaller is 
'

1dt , the 

better is the convergency. Appropriate value for N is also wanted; it depends 

somewhat on 
'

1dt . We limit ourselves to 
' 5

1 10dt   with N= 30.  
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Figure 3 : Normalized crack extension force G  (34) as a function of the 

crack inclination angle θ ; 0.22  ; ' 5

1 2 10dt   

 

In Figure 3 is reported the reduced crack extension force G  (34) as a function 

of the inclination angle θ of the crack from the flat boundary (see Figure 1). 

We take Poisson’s ratio 0.22   for soda-lime glass. A net maximum                            

( 55MG ) for G  is seen at an angle 33M   ; M  doesn’t change appreciably 

while MG decreases slowly with '

1dt  down to ' 5

1 2 10dt  . Hence, the value 

for MG  should be smaller. An experimentally observed value for θ is 22E    

[1] (see also [2, 3]). The discrepancy with respect to M  is about 10°. A similar 

discrepancy between theory and experiment has been mentioned elsewhere 

[20]. Our expectation (see Section 1), that the crack system shown in Figure 1 

can evaluate the Hertzian cone crack, seems correct. An extremum for G  (34) 

with respect to θ is given by / 0G    . This condition does not involve the 

shear modulus. Hence the crack angle is entirely controlled by the Poisson’s 

ratio. The merit of the present modelling resides in its capability of providing 

an expression for the crack extension force G. Using the relation G = 2γ at the 

maximum of G, we have a useful relation (in spherical indentation fracture too 

[1 - 3]) between applied load P, crack length l (see G0 (33)) and crack 

inclination angle θ.   

 

 

V - CONCLUSION 
 

We have investigated fracture propagation in a three-dimensional elastic half-

space subjected to the rectilinear contact pressure of a cylinder lying on the flat 

Ox1x3- plane boundary. The load is applied in the x2- direction and over the 

Ox3- contact line. Under such conditions, fracture over large distance occurs on 
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a planar surface parallel to the cylinder x3- axis and inclined by angle θ from 

x1x3 (Figure 1). The applied stress field ( )A  (2, 16) is the superposition ( )a  

(15) of the stress fields due point loads distributed continuously along Ox3 and 

induced normal stresses promoted by the Poisson’s effect. This leads to the 

result that the x2- component of the force HdF (17) on any surface element of 

Ox1x3 is zero everywhere except on the contact line. Our method of stress 

analysis in the fractured medium consists in representing the crack by a 
continuous distribution of two straight edge dislocation families J (J= // and  ) 

parallel to x3 with Burgers vectors / / ( ,0,0)b b  and (0, ,0)b b   (Figure 1). 

The stress fields due to these dislocations J (18, 19) as well as those (20) of a 

straight screw dislocation parallel to x3 with Burgers vector (0,0, )IIIb b have 

been determined by a method involving Galerkin vectors (8, 10); these results 

are in complete agreement with those obtained in previous works [8, 9, 19] 

using different methods. The analysis of the crack under load leads to a system 

of two integral equations with Cauchy-type singular kernels implying the 

dislocation distribution functions DJ. The proposed solutions (26) are based on 

Erdogan and Gupta studies [14, 15]. Under such conditions, the relative 

displacement of the faces of the crack J (27), crack-tip stresses ( )ij s  (29) and 

crack extension force G (31, 34) per unit edge length, are calculated. The 

proposed expressions require a numerical analysis. Our qualitative numerical 

analysis (Section 4) reveals that G, expressed as a function of θ, exhibits a 

maximum at an angle  33M    with Poisson’s ratio 0.22   for soda-lime 

glass; this is in reasonable agreement with the observed value 22E    in view 

of our approximative numerical analysis. Our expression for G (34) shows that 

the crack inclination angle θ is entirely controlled by the Poisson’s ratio. This 

expression is equally helpful for indentation fracturing [1 - 3].  
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