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ABSTRACT 
 

In the present study, we consider a large non-planar crack model corresponding 
to a cracking over large distances and of arbitrary shape in an elastic isotropic 

medium. The system is solicited in mixed mode I+II+III. We include in the 

analysis the induced normal stresses, which result from the Poisson effect, acting 

perpendicularly to the direction of applied tension. The method of analysis consists 

in representing the non-planar crack by a continuous distribution of infinitesimal 

dislocations. Basic dislocations involved in the treatment are sinusoidal edge and 

screw dislocations the Burgers vectors of which are aligned along the directions of 

the modes I, II and III of applied loadings. Expressions for the stresses at the crack-

tip and the crack extension force G (per unit length of the crack front) are given. 

The study shows that the Poisson effect increases significantly G. This data can be 

considered for a better comparison with experiment.  
 

Keywords : elasticity, fracture mechanics, dislocation, crack-tip stress, energy 

release rate.  

 
 

RÉSUMÉ 
 

Fissure non plane sous sollicitation extérieure arbitraire et en 

présence des contraintes normales induites par l’effet Poisson  
 

Dans la présente étude, nous considérons une fissure non plane de grande taille, 

correspondant à une fissuration sur de grandes distances, et de forme arbitraire 

dans un milieu isotrope élastique. Le système est sollicité en mode mixte 

I+II+III. Nous incluons dans l’analyse, des contraintes normales induites qui 

résultent de la contraction, par effet Poisson, agissant perpendiculairement à la 

direction de la tension appliquée. La méthode d'analyse consiste à représenter 

la fissure non-plane par une distribution continue de dislocations 

infinitésimales. Les dislocations de base impliquées dans le traitement sont des 
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dislocations sinusoïdales coins et vis dont les vecteurs de Burgers sont alignés 

suivant les directions des modes de sollicitation I, II et III. Nous proposons 

dans ces conditions, des expressions pour les contraintes en tête de fissure et la 

force d’extension de la fissure. Il ressort de l’étude que l’effet Poisson 

augmente nettement la force d’extension de la fissure. Cette donnée est à 

prendre en considération pour une meilleure confrontation avec l’expérience.  
 

Mots-clés : élasticité, mécanique de la rupture, dislocation, force d’extension 

de la fissure, contrainte en tête de fissure.  

 
 

I - INTRODUCTION 
 

We propose to analyse the propagation conditions of a non-planar crack of any 

shape under arbitrary external applied loading (mixed mode I + II + III) by 

including internal normal stresses which result from the contraction due to the 

Poisson effect acting perpendicularly to the applied tension direction. The 

Poisson effect is common to most materials under load, which means that the 

mechanical parts in use in the various human activities are the seat of normal 

induced stresses. As an illustration, consider a homogeneous rectangular 

fracture specimen with large dimensions to which is attached a Cartesian 

coordinate system 
i

x (Figure 1). Initially, the specimen is dashed. Under the 

action of uniform applied tension a

22
 , the specimen extends in the 

2
x

direction but shrinks according to the Poisson effect in the 
1

x  and 
3

x directions. 

The shape then taken by the specimen is in solid (Figure 1). 
 

 
 

Figure 1 : Fracture specimen loaded in tension a

22
  along 

2
x . The induced 

normal stresses along the directions 
1

x  and 
3

x with magnitude a

22


(originating from the Poisson effect) are illustrated 
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Inside the material, there are normal induced stresses aa

2211
   and 

aa

2233
   in the 

1
x  and 

3
x  directions,   being the Poisson’s ratio. We consider 

a planar crack, the centre of which will be taken as origin O. The crack is of finite 

extension along 
1

x  and infinite with a straight front on 
3

x  ; it is inclined around 

3
x  by angle  with respect to 

31
xOx . When 0 , the crack is in 

31
xOx  and 

parallel to the compression aa

2211
   direction. Further extension of the crack 

corresponds to a relative displacement of the faces of the crack along 
2

x only; 

under such conditions, the force due to 
a

11
  does not work and consequently 

contributes zero to the crack extension force. However, when 0 , 
a

11
  

contributes effectively to the crack extension force with virtually a non-negligible 

value because  
aa

2211
/  in magnitude (about 33% in isotropic material). A 

similar comment can be done with 
aa

2233
   when the planar crack is inclined 

around the 
1

x  direction by angle  . Let us add to the above constraints uniform 

applied shear stresses 
a

12
  and 

a

23
 , parallel to 

31
xx  and in directions 

1
x  and 

3
x , 

respectively. The fracture sample is then externally solicited in mixed mode 

I+II+III (general loading).  
 

Under such conditions, the broken surface is non-planar and the associated crack 

exhibits a non-straight oscillating front when viewed in planes perpendicular to the 

local crack propagation direction (see [1 - 3] and references therein). The fractured 

surface involves planar portions that are tilted around axes 
1

x  and 
3

x , implying 

that normal induced stresses contribute non-zero values to the crack extension 

force during the fracture process. The aim of the present study is to provide 

expressions for the crack-tip stresses and the crack extension force corresponding 

to non-planar cracks under general loading. A previous work that neglects Poisson 

effect is available [3]. The present one includes the normal induced stresses that 

originate from the Poisson effect associated with the tension loading. The interest 

of such a study is to have a more general expression of the crack extension force 

G. Crack configurations for which G is maximum, are those that are compared 

with experimental findings. We stress that articles dealing with cracks which 

include normal stresses due to Poisson effect are uncommon in the literature. In 

Section 2, we present the methodology of the analysis. Sections 3 and 4 are 

devoted to results, and discussion and conclusion, respectively. 

 
 

II - METHODOLOGY  
 

The non-planar crack model and associated analysis correspond to those of [3]. 

The crack is of finite extension along 
1

x ( ax 
1

) and infinite along 
3

x . Its 
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shape f in the planes 
32

xx  is developed in Fourier series form 

  )(),()(cossin
131133

xhxxxhxxf
nnnn

n

   .                            (1) 

 

Here n is a positive integer; h, 
n

 , 
n

  and 
n

  are real that are 
1

x dependent 

in the crack analysis. As in all modelling where the crack front runs 

indefinitely, this crack model is devoted to fracture propagation over large 

distances. We would like to stress that because the crack model is non-planar 

from the beginning, the present description appears more general than a 

modelling that starts with a planar starter crack. This is because the arbitrarily 

chosen planar starter crack must move first over macroscopic distance, 

changing gradually its shape from planar to non-planar, in order to achieve 

crack configurations that effectively correspond to the externally applied 

loadings. We assume an infinite isotropic elastic medium, subjected to uniform 

applied tension a

22
  and shears a

12
  and a

23
  , at infinity. In addition, the 

treatment includes normal induced stresses aa

2211
   and 

aa

2233
   

originating from Poisson effect. Our method of analysis [1 to 10] consists in 

representing the crack by a continuous distribution of infinitesimal dislocation 

families. In the present work, the dislocations have form f (1). We consider 

three dislocation families in the distribution [3]. Families 1i  and 2 are edges 

(I and II) on average with Burgers vectors )0,,0( bb
I



 and )0,0,(bb

II



 

respectively, and family 3 consists of screws with ),0,0( bb
III




. The three 

families respond essentially to modes of loading I, II and III, respectively. The 

dislocation distribution function )(
1

xD
i

 gives the number of dislocations of 

family i in a small interval 
1

dx  about 
1

x  as 
11

)( dxxD
i

. To find the dislocation 

distributions, we ask the crack faces to be traction-free; this gives  
 















0//

0//

0//

33313123

23312122

13311112







xfxf

xfxf

xfxf

.                                                                   (2) 

 

ij
  stands for the total stress at any point ),,(

321
xxx  in the medium and is 

linked to 
i

D . In (2), we are concerned with the points of the crack faces only. 

We write 
ij

  as 

 
)3()2()1(

ijijij

a

ijij
   ;                                                                           (3) 

 

)(
a

  is the externally applied stress tensor including normal induced stresses 
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from Poisson effect, 



























aa

aaa

aa

a

2223

232212

1222

0

0

)(








,  

'

1

'

132

'

11

)(

321

)(
)(),,(),,( dxxDxxxxxxx

n

n

ij

a

a

n

ij
 



   ( 1n , 2 and 3).                   (4) 

 
)( n

ij
 (n = 1, 2 and 3) is the stress field produced by a dislocation displaced by 

( hx 
2

) from the origin with Burgers vector )0,,0( b , )0,0,(b  or ),0,0( b .
)( n

ij
  

may be taken from [3]. When the dislocation distributions )(
1

xD
i

( 1i  to 3) 

are known, the relative displacement of the faces of the crack, the crack-tip stresses 

and the crack extension force are derived by integrations (see [2, 3, 7, 10] for 

example). In its general form, (2) requires a numerical resolution. Only simple 

forms of f are tractable. We have given approximate solutions for 
1

D  and 
3

D

under mixed mode I+III loading when 0h and )(
3

x  depends on 
3

x only 

[2]. Fortunately, we can give approximate expressions for the stress about the 

crack front and the crack extension with f given by (1), taking for )(
1

xD
i

 

dislocation distributions of straight dislocation arrays obtained inSection 3 

below; such approximations have been performed in [2, 3]. Figure 2 (taken 

from [3]) is a schematic representation of simple special cracks captured by the 

modelling. The cracks extend in the 
1

x direction from ax 
1

 to a and must 

be considered to run indefinitely in the 
3

x direction.  
 

The crack shape in planes perpendicular to 
1

x  is described by  (Figure 2c for 

example). The shape f  of the crack in planes perpendicular to 
3

x  is given by 

both  , through the 
1

x dependence of positive quantities 
n

 , 
n

  and 
n



(Equation (1)), and function )(
1

xhh  . Since   is assumed to be small 

oscillating function, the average fracture plane is described correctly by the 

equation )(
12

xhx  . When 0 , the crack dislocations are straight parallel to 

3
x  and distributed over the surface )(

12
xhx  . Specific examples are (Figure 

2) :  

 
101

)( xpxh   ( 0
0
p ) and 0 . This corresponds to a planar crack 

0
 (with a straight front parallel to 

3
x ) rotated around 

3
Ox  by angle 

0

1

0
tan p


  from 

31
xOx , Figure 2a.  

 )(
1

xh  is an arbitrary function of 
1

x  and 0 . The sketch in Figure 2b 

corresponds to h  odd although this is not mandatory. Actually h odd 

conforms well to homogeneity of the medium, geometry of the applied 
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loadings and i
D  (Section 3) approximations adopted in the present study. 

 101
)( xpxh   ( 0

0
p ) and )(

3
x   independent of 1

x . The crack 

fluctuates about plane 0
 with a front spreading in planes parallel to 

32
xx  in the form  . In the example displayed in Figure 2c the crack 

consists of planar facets with inclination angles 
A

  and 
B

  (Figure 2d) 

at points A and B of the crack front located on the average fracture 

plane. Points A and B are indicated in Figure 2c.  

 

 

 
 

Figure 2 : Simple special cracks. (a) Inclined planar crack 0
 (see text). (b) 

A non-planar crack (parallel to 
3

x ) as h odd function of 
1

x                         

( )(
12

xhx  ). (c) Non-planar crack fluctuating about an average 

inclined plane
0

 . The crack consists of planar facets; its fronts at 

ax 
1

 lie in 
32

xx planes. At ax 
1

, the crack front is 

characterized by inclination angles 
A

  and 
B

  (see (d)) at points A 

and B located on the average fracture plane. (d) Sketch of the 

crack front in (c) with B taken as origin. In this geometry (from (a) 

to (c)) the general loading of the crack systems corresponds to 

uniform applied a

22
 , a

12
  and a

23
  at infinity in the 

2
x , 

1
x  and 

3
x  

directions, respectively 
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III - RESULTS  
 

III-1. Dislocation distributions  
 

Assume first that the dislocations are straight parallel to the 
3

x direction

)0(  and 
101

)( xpxh   depends linearly on 
1

x  with 
0

p  positive constant. 

This corresponds to a planar crack (
0

  in Figure 2a) of finite extension, with 

straight fronts running indefinitely along 
3

x , rotated (from
31

xOx ) about the 

positive 
3

x direction by 
0

1

0
tan p


 . The crack extends from ax 

1
 to a

and is subjected to mixed mode I+II+III with loadings applied at infinity. Under 

such conditions, we have 011
// pxhxf  , 0//

33
 xxf  ; the 

condition (2) for the crack faces to be free from tractions becomes 
 

















































0
)(

0
)(

0
)(

'

1'

11

'

13

223

'

1'

11

'

12

122012

'

1'

11

'

11

112022

dx
xx

xD
C

dx
xx

xD
Cp

dx
xx

xD
Cp

a

a

a

a

a

a

A

a

a

a

aa







                                                                   (5) 

 

where the Cauchy principal values of the integrals must be taken; 

)1(2/
1

  bC ,  2/
2

bC   and 
A

 is the Poisson ratio, so denoted, to 

identify the contributions of the normal induced stresses due to the Poisson 

effect under consideration. The type of solution is well known [11] : 

 

)(11)(
1

)(

0

22

12

0
2

1

2

1

122

22

12

011
xDp

xaC

x
pxD

I

a

aa

a

a











































, 

)(11)(
1

)(

0

12

22

0
2

1

2

1

112

12

22

012
xDp

xaC

x
pxD

II

a

a

A

a

a

a

A











































, 

)()(
1

)(

0
2

1

2

1

2

23

13
xD

xa

x

C
xD

III

a









;                                                                    (6) 

 
)(

0

i
D ( Ii  , II and III respectively) corresponds to the equilibrium distribution 
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of straight dislocations when the crack is planar in the 
31

xOx plane ( 0
0
p ), 

extending from ax 
1

to a , under pure mode i  loading. The corresponding 

relative displacement
i

  of the crack faces, in the
2

x  ( 1i ),
1

x ( 2i ) and 
3

x                

( 3i ) directions, are :  

 

)(11)(
1

)(

0

22

12

0

2

1

2

1

22

22

12

011
xpxa

C

b
px

I

a

aa

a

a











































 , 

)(11)(
1

)(

0

12

22

0

2

1

2

1

12

12

22

012
xpxa

C

b
px

II

a

a

A

a

a

a

A











































 , 

)()(
1

)(

0

2

1

2

2

23

13
xxa

C

b
x

III

a





  ;                                                                              (7) 

 
)(

0

i
 ( Ii  , II and III respectively), similarly as )(

0

i
D , corresponds to the relative 

displacement of the crack faces when the crack is in 
31

xOx  under pure mode i

loading. 
i

D  is unbounded at ax 
1

and the 
i

  curve vertical at these end points. 

 

III-2. Stresses about the crack front  
 

To obtain expressions for the stress about the crack front, we proceed as 

follows. In the neighbourhood of the crack front located at ax 
1

, any point P

with coordinates ),,(
321

xxx  is characterized by 
2

x  close to h  since the fracture 

surface is given by  hf  with   small. We can thus consider the Taylor 

series expansion of ),,(
32

'

11

)(
xxxx

n

ij
  about )(

12
xhx   to first order with 

respect to )(
2

hx  ; this gives  

 

)()(),,(),,(
22

2

)(

3

'

11

)(

32

'

11

)(
hxohx

x
xhxxxxxx

n

ijn

ij

n

ij








                     (8) 

 

where )(
2

hxo   is the complementary part of the series form. Writing 

sax 
1

, as 0 , 
ij

 (3) is given by the following formula: 

 

'

1

'

132

'

1

)(

3

1

32
)(),,(),,( dxxDxxxsaxxs

n

n

ij

a

aan

ij
 



 



                                         (9) 

 

with aa  . This stress expression means that only those dislocations located 
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about the crack front in 
1

x interval ],[ aaa  will contribute significantly 

to the stress at sax 
1

 ahead of the crack tip as s tends to zero; any other 

contribution will be negligible for a sufficiently small value of s. We observe 

that this formula is precise with no place for any other kind of additional stress 

term. Applying the Taylor expansion (8), in )),(,(
31

'

11

)(
xxhxx

n

ij
  and 

2

)(
/ x

n

ij
 (in which sax 

1
), appears the difference ( )()(

'

11
xhxh  ) which 

we express as follows since 
1

x  and '

1
x  (see (9)) are close to a : 

)()()()(
111

axoaxpahxh   and  )()()()(
'

1

'

1

'

1
axoaxpahxh   

where 
1

/)( xahp  ; therefore )()()()(
'

11

'

11

'

11
xxoxxpxhxh  . 

Furthermore in 
ij

 (9) we restrict ourselves to singularities of the type 
2/1

s

only; this is the singularity that comes into play in the study of planar cracks and 

gives a well-defined value to the crack extension force. This corresponds to 

identify 
)( n

ij
  to the unbounded terms with )'/(1

1
xsa   in the Taylor expansion 

(8). Assuming ),(
31

xx  and its spatial derivatives with respect to 
3

x  be bounded 

at ax 
1

, the involved integrals in (9) are of the type ')'/()'(
111

dxxsaxD
n



which is calculated approximately taking for 
n

D  the straight edge and screw 

dislocation distributions (6) corresponding to a planar crack 
0

  with a straight 

front parallel to 
3

x  (Figure 2a). We obtain (
)3()2()1(

ijijijij
  ) : 
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1
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3213213232
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p
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where subscript i and j take the values (1, 2 and 3) and (1 and 2) respectively; 

1
/)( xahp  , 0

i
K ( i I, II and III respectively) is the SIF for the planar crack 

in 
31

xOx  at the origin under pure mode i  loading;  aK
a

I 22

0
 , 

 aK
a

II 12

0
  and  aK

a

III 23

0
 . We stress again that s, 

2
x  and 

3
x  are 

arbitrary, aaxs 
1

 ( 0s ) and ))((
2

ahx   is small. The parameter 
0

p  

in (10) originates from a planar crack 0
  (Figure 2a) hypothetically assumed 

to approximate the average fracture surface )(
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xhx  . This suggests that we 

could write )()(
1101

xhxpxh   where h  is an oscillating function of 1
x  

taking small positive and negative values. Taking (6) for n
D  results in 

coefficients )/1(
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p  , )/1(
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A
p  and sK
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2/

0
only in (10), the 

other factors have no concern with this approximation.  
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III-3. Crack extension force  
 

In the following, an expression for the derivative G of the energy of the system 

with respect to crack area is derived. This serves to discuss the initiation of 

crack motion and provide an expression for the crack extension force. We 

follow [1 to 3] and the procedure is adapted from [11]. Allow the right-hand 

front of the non-planar crack with shape (1) (use Figure 2c to illustrate) to 

advance (say rigidly for simplicity) from ax 
1

 to aa  , but apply forces to 

the freshly formed surfaces to prevent relative displacement; the energy of the 

system is unaltered. Now allow these forces to relax to zero so that the crack 

extends effectively from a  to aa  . The work done by these forces 

corresponds to a decrease of the energy of the system which we shall estimate 

(the energy of the system consists of the elastic energy of the medium and the 

energy of the loading mechanism). The element ds  of the fracture surface 

),(
312

xxfx   ahead of the crack front, at a point ),,(
321

xfxxP  , may be 

defined by dssd 


  where 


 is the unit vector perpendicular to ds  pointing to 

the positive 
2

x direction. 
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the force acting on ds  in the 
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x direction is 
jij

ds  (the summation convention 

on repeated subscripts applies) where 
ij

  are stresses ahead of the shorter 

crack; thus the energy change associated with ds is 2/
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jij
uds  (here a 

summation is also considered over i 1, 2 and 3) where 
)( i

u  is the difference 
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the integration being performed with respect to 
1

x ; we stress that s is the sum 

of the surface elements ds taken at the various points ),,(
321

xfxxP   as 1
x  

only changes from a  to aa  . Let G be a derivative of the energy of the 

system with respect to crack area. G corresponds to the limiting value taken by 

sE  /  as a  (as also s ) decreases to zero. Stresses 
ij

  generally consist 

of terms that are either bounded or unbounded as 1
x  tends to a ; only those 

stress terms that are singular may contribute a non-zero value to G; the bounded 

terms all contribute nothing. Using (10) and defining )(
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Expressions in   ,   and   are very long and need not be displayed here; 

an explicit presentation (16) follows. (12) gives the value of G  at an arbitrary 

point ),,(
320

xfxaP   along the front of the non-planar crack with projected 

half-length a  along
1

x . The calculation of 
)( i

u depends on the way the 

extension of the right-hand front of the crack from ax 
1  to aa   is 

performed. When )( i
u  is obtained from a distribution of dislocations 

perpendicular to the 1
x -direction, we implicitly assume a rigid crack-front 

displacement (i.e. the crack front moves rigidly). In that case, )( i
u  may be 

obtained from the solution of (2) modified to allow for the fact that the crack 

extends from ax 
1

 to aa   instead of from a  to a . Approximate 

expressions for )(

0

i
G ( 1i , 2 and 3) correspond to a planar distribution of 

straight edge and screw dislocations. When the crack has the geometry of 
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Figure 2a with 0
0
 ( 0

0
p ), Bilby and Eshelby [11] have shown that 
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
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For the planar crack with a straight front, the decrease of the energy of the 

system ( E ), divided by the surface element adl  ( l  runs along the crack 

front), is defined as the crack extension force per unit edge length of the crack 

front (see, for example, [11]). In the present study, we shall refer to G (12) as 

the crack extension force per unit length of the crack front. In Section 3.4, we 

give a more detailed description of G for special cracks. 

 

III-4. Special cracks 
 

We consider first the crack in Figure 2b; it extends from ax 
1

 to a  and 

runs indefinitely in the 
3

x direction. The crack front is straight parallel to 
3

x  

( 0 ) and )(
1

xhf   independent of 
3

x . We assume the crack to fluctuate 

about plane 
0

  (Figure 2a) and take 
i

D  (6) as the distribution of the 

equilibrium crack dislocations.  Under such conditions the reduced crack 

extension force G
~

(15) under mixed mode I+II+III loading takes the form 
 

 )1/(11

)1/()1()(
)(

~

2
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2
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2
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2
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
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

MMp

MMpMp
PG

A     ( )(;0
1

xhh  )      (17) 

 

at point )),(,(
320

xahxaP   of the crack front located at ax 
1

; 

tan/)(
1
 xahp  (for  , see Figure 2b). A similar relation (18) below 

will be given a more detailed description. 
 

The second crack we present is given in Figure 2a. This is a tilted planar crack 

corresponding to the rotation of plane 
31

xOx  about 
3

Ox by angle )(tan
0

1

0
p



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. The crack front is straight ( 0 ) and 
10

xph  . The normalized crack 

extension force G
~

(15) then reads  
 

 )1/(11

)1/()1()(
)(

~

2

13

2

12

2

0

2

13

2

120

2

120

0










MMp

MMpMp
PG

A      (
10

;0 xph  )       (18) 

at point ),,(
3020

xapxaP   of the crack front located at ax 
1

. Figures 3 and 4 

are plots of G
~

 (18) as a function of 
0

  for different 
12

M  values when 0
13

M

(mixed mode I+II loading) under 0
A

 (absence of Poisson effect) and 0
A



(presence of Poisson effect), respectively. We expect that for a tilted plane 

crack 0
  (Figure 2a) to be observable experimentally, it is necessary that G

~
 

be larger than 1. As we can see from Figure 3, this occurs for sufficiently large 

12
M  and 

0
  values; the larger the 

12
M (dominant mode II loading) the smaller 

the 
0

  values for which 1
~
G . As we can see from Figure 4, Poisson effect 

increases significantly G
~

 values. 

 

 
 

Figure 3 : Normalized crack extension force G
~

(18) versus 
0

  ( 0
A



absence of Poisson effect) for a planar crack 
0

  with a straight front 

parallel to 
3

Ox  (Figure 2a), tilted about 
3

Ox  by an angle 

0

1

0
tan p


  from 

31
xOx , under mixed mode I+II loading ( 0

13
M ). 

The curves correspond from bottom to top to 7.0
12

M , 1.5 and 3 
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Figure 4 : Normalized crack extension force G
~

(18) versus 
0

                         

( 0
A

 presence of Poisson effect) for a planar crack 
0



(other conditions as in Figure 3) 

 

The third example we shall describe is given in Figure 2c. This is a non-planar 

crack with a segmented front (Figure 2d) whose average fracture surface is 

plane 
0

  (illustrated in Figure 2a). The crack front at ax 
1

 runs indefinitely 

in the 
3

x direction and is in a 
32

xx plane. We describe  below taking 

locally B as origin as in Figure 2d.   is then odd and  )2(
BA



periodical with respect to 
3

x  where 
A

  and 
B

 (Figure 2d) are the projected 

length along 
3

x  of planar facet A and B  respectively.   is given by : 

 

3
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x   .                                             (19) 

 

We assume general loading (mixed mode I+II+III), write tan
0

 pp  for 

simplicity in (16) for the reduced crack extension force, now denoted 
v

G
~

, and 

express the spatial average 
v

G
~

 of 
v

G
~

 defined as 
3
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where 

  2222

0
1/1/)/(1

ABBABA
ppppppppv  , 

  2222

1
1/11/1)/(

BABABA
ppppppppv  , 

  2222

2
1/1/)/(

BBAABABA
ppppppppppv                         (21) 

 

and 
AA

p tan , 
BB

p tan . Hence 
v

G
~

is a function of parameters 

),;,,(
1312

MMppp
BA

. When 
B

  (or
A

 ) equals zero, the crack front is 

essentially straight parallel to the 
3

x direction. The corresponding crack is 

like planar crack
0

 (Figure 2a); under such conditions 
v

G
~

 (20) is identical 

to (18). We have reported on Figures 5 to 8 
v

G
~

(20) as a function of ),(
A

  

for constant  70
B

 ; Figures 5 and 6 describe mixed mode I+II loading               

( 0
13

M ) and Figures 7 and 8 correspond to mixed mode I+II+III loading, in 

absence or presence of Poisson effect.  

 

 
 

Figure 5 : Surfaces ),(
~

Av
G   with associated contours at constant 

 70
B

 , 0
13

M  ( 0
A

 absence of Poisson effect) and four 

different 12
M  : (a) 1.0

12
M , (b) 0.5, (c) 1 and (d) 2 ; 3/1  
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Figure 6 : Surfaces ),(
~

Av
G   with associated contours ( 0

A
 presence 

of Poisson effect; other conditions as in Figure 5) 

 

 
 

Figure 7 : Surfaces ),(
~

Av
G  with associated contours at constant 

 70
B

 , 2.0
12

M  ( 0
A

 absence of Poisson effect) and four 

different 
13

M : (a) 1.0
13

M , (b) 0.5, (c) 1 and (d) 2; 3/1  

 

 
 

Figure 8 : Surfaces ),(
~

Av
G   with associated contours ( 0

A
 presence 

of Poisson effect; other conditions as in Figure 7) 
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IV - DISCUSSION AND CONCLUSION 
 

The normal induced stress aa

2211
   (originating from Poisson effect) 

increases clearly the crack extension force for the planar crack tilted around 
3

x  

by angle 
0

  with respect to 
31

xOx . This is observed on Figures 3 and 4 for 

mixed mode I+II loading. For 3
12

M , from values less than 1 and lower angle 

0
 values, G

~
 passes above 1 at  40

0
  in presence of normal stresses   

(Figure 4), while in their absence (Figure 3), this is only done from  50
0

 . 

The value 1
~

G  corresponds to that of the planar crack in 
31

xOx . Higher 

values of G
~

 (larger than the value 1 as observed under certain conditions, in 

Figure 4 for example) means that inclined cracks 
0

 (Figure 2a) are in 

favourable conditions to move, hence to exist in the broken specimen. The 

possibility that G
~

 may achieved values larger than 1 agrees with experiments 

showing that when a mode II loading (in addition to mode I) is applied to a 

planar crack located in 
31

xOx , the subsequent fracture propagation path departs 

from 
31

xx  [12 to 14]. In general, the normal stresses induced by the Poisson 

effect increase the force of extension of the cracks.  
 

This is very clear in Figure 6 compared with Figure 5 for all values of 
12

M . 

Figures 7 and 8 are also in agreement with this conclusion. Confrontations of 

our results with other previous analyses have been performed (see [2, 3, 5] for 

the homogeneous material and [8, 9] for the interface crack, for example). Here, 

we want to emphasize the agreement of our relationship (18) with previous 

work [15]. We neglect Poisson effect 0
A

  and consider a planar crack in 

31
xOx whose shape about one tip is in the form of an infinitesimal kink inclined 

by angle 
0

 with respect to 
31

xOx . We assume mixed mode I+II loading and a 

straight crack front parallel to 
3

x . Cotterell and Rice [15] have established an 

expression for the stress intensity factors at the tip of the infinitesimal branch 

(i.e. their relation (31)) valid for small 
0

 . Since their formula does not depend 

on the shape of the crack, it applies also to an inclined crack 
0

  (Figure 2a) as 

demonstrated below. The stress intensity factors given in [15] can be expanded 

to second order in 
0

 ; these combined with Irwin’s expression (i.e. the usual 

plane strain relation) lead to the following formula for the crack extension force :  
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with 
I

G
0

 given in the text above (14). It is easy to show that in absence of mode 

III loading ( 0
13

M ), our relation (18) developed to second order in small 

00
p  gives an identical G value. This suggests some confidence in the results 

(15, 16) displayed in the present study.  
 

In conclusion, the present study provides expressions of crack-tip stresses and 

crack extension force for non-planar cracks of arbitrary shapes and 

macroscopic sizes, corresponding to cracking over large distances under 

arbitrary external loading (mode I+II+III). These expressions incorporate 

induced normal stresses that result from the contraction, due to Poisson effect, 

perpendicular to the direction of applied tension. General expressions for the 

extension force G of the crack are sought which consider all the stresses in the 

material under load. This make it possible to best compare to the experiment, 

the idea that crack configurations that maximize G are those observed on 

broken materials.  
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