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ABSTRACT 

 

Starting from the well-established fact that the electric potential in metals 

round a dislocation is proportional to the associated lattice dilatation, we 

obtain by superposition the electric potential due to an isolated crack and a 

crack associated with a crack-tip plastic zone and a dislocation-free zone in 

between (elastic-plastic crack). We assume mode I loading in a linear 

isotropic elastic medium. The electric potential and associated electric field 

thus obtained, depend implicitly on time through the variation with time of 

the applied stress, crack length and size and location of the plastic zone. It is 

then possible, using Maxwell's equations, to obtain expressions for the 

induced magnetic field, Poynting’s vector and intensity of the 

electromagnetic wave. We further restrict ourselves to quasi static 

propagation of the isolated crack assuming the Griffith condition 2G (G is 

the crack extension force and  the surface energy) to hold at any time. 

Expressions and graphical representations of the various electromagnetic 

quantities are given; their explicit dependences with respect to various 

parameters including crack extension velocity and surface energy are 

revealed. The present study applies to pure metals. However, because an 

expression of the lattice dilatation is also obtained, this latter result can be 

used in any other material where an electric field is produced by an 

inhomogeneous dilatation of the lattice. The case of ice is discussed and it is 

indicated how an analysis, taking account of crack-tip plasticity, could be 

conducted. Finally, the weakness in certain models devoted to the emission of 

electromagnetic radiation during plasticity and fracture in metallic materials 

is stressed.  

Keywords : crack mechanics, crack propagation, dislocations, crack-tip  

plasticity, electromagnetic radiation  
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RÉSUMÉ 

Champs électromagnétiques générés dans les métaux par la 

propagation quasi statique de fissures élastiques plastiques 

Dans la présente étude, nous partons du résultat bien connu dans les métaux 

que le potentiel électrique généré  par une dislocation est proportionnel à la 

dilatation du réseau qu'elle introduit, pour donner par superposition, le 

potentiel électrique produit par une fissure isolée et une fissure entourée d'une 

zone plastique localisée en tête de fissure entre lesquelles il y a une zone libre 

de dislocation (fissure élastique plastique). Nous considérons une sollicitation 

en mode I dans un milieu élastique linéaire isotrope. Le potentiel et champ 

électrique ainsi obtenus, dépendent implicitement du temps à travers la 

dépendance en fonction du temps de la contrainte appliquée, de la taille de la 

fissure et de la taille et localisation de la zone plastique. Il est alors possible, à 

partir des équations de Maxwell, d'en proposer une expression du champ 

magnétique induit et, par conséquent, du vecteur de Poynting et de l'intensité 

de l'onde électromagnétique associée. Nous nous restreignons ensuite à la 

propagation quasi statique d'une fissure isolée en supposant que la condition 

de Griffith 2G (G est la force d'extension de la fissure et  l'énergie de 

surface) s'applique à tout instant. Des expressions de diverses grandeurs 

électromagnétiques et leur représentations graphiques sont données. Les 

dépendances explicites de ces grandeurs en fonction de divers paramètres, 

dont la contrainte appliquée, la vitesse de propagation du front de fissure et 

l'énergie de surface,  sont mises en évidence. Les résultats de ce travail 

s'appliquent d'abord aux métaux.  Comme ce travail fournit également une 

expression de la dilatation inhomogène du réseau , ce dernier résultat peut 

être également utilisé pour tout autre matériau où une dilatation du réseau 

produit un champ électrique. Le cas de la glace est discuté explicitement et il 

est indiqué comment une analyse prenant en compte une plasticité localisée 

en tête de fissure peut être menée. Finalement, la faiblesse de certains 

modèles, destinés à rendre compte de l'émission de rayonnements 

électromagnétiques dans les métaux, est démontrée.  

Mots-clés: mécanique de la rupture, propagation de fissure, dislocations, 

plasticité en tête de fissure, rayonnement électromagnétique.  

 

I - INTRODUCTION  

Electromagnetic phenomena generated in materials by dislocations and cracks 

are known for more than half a century; a review of works on electrical 

effects of dislocations in various materials (ionic crystals, metals, 
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semiconductors) has been given by Nabarro [1] who also provides us with the 

following simple result valid for metals: the inhomogeneous dilatation )(xD




( x


position vector) of the lattice due to the dislocation leads to a redistribution 

of the conduction electrons. As a result, an electric potential )(xVD


and 

electric field )(xED


are built round a dislocation; furthermore the relation 

linking 
D and

DV is linear.  

The proportionality relation between 
DV and

D revealed in metallic materials 

is helpful. This suggests that a similar relation between the electric potential 

)(xVC


(resp. CDV ) and the corresponding lattice dilatation )(xC


 (resp. CD ) 

exists in presence of a crack (resp. elastic-plastic crack). This is because a 

crack is equivalent to a continuous distribution of dislocations with 

infinitesimal Burgers vectors (Bilby et al. [2]; Friedel [3]; Bilby and Eshelby 

[4]).  

Our study aims at providing analytical expressions for CV , CDV
 
and 

corresponding electric fields CE and CDE for simple crack geometries. We 

stress  that these expressions depend implicitly on time through parameters 

such as applied stress, crack length and size of plastic zone ahead of the crack 

front. We can then link the electric fields to their induced magnetic fields 

through Maxwell equations and interpret in this way the corresponding 

electromagnetic phenomena. The results apply first to metals for which a 

number of works on the emission of electromagnetic radiation exist (Misra 

[5], Misra and Kumar [6], Jagasivamani and Iyer [7], among others). Our 

work also finds application in any material where proportionality exists 

between electric potential and lattice dilatation such as in ice (Petrenko [8, 9]; 

Evtushenko et al. [10]).  
 

The present analysis demonstrates once again the conceptual advantage of 

representing the crack by a continuous distribution of infinitesimal 

dislocations. This allows a simplified treatment (calculation of electric 

polarization vector, electric potential and electric and magnetic fields, for 

instance) based on the dislocation only. Additional experiments of concern 

are numerous and involve a number of different materials (see for example: 

Golovin et al. [11]; Cress et al. [12]; Frid et al. [13] ; Mori et al. [14]; 

Hadjicontis et al. [15]).  

In what follows, an elastic-plastic crack model under mode I loading is 

considered (Section 2) from which an expression for the electric potential is 

calculated; the isolated crack is equally treated. In Section 3, the electric field, 

induced magnetic field and Poynting's vector are derived. In Section 4, 

graphical representations of the various electromagnetic quantities are 

performed for the isolated crack that propagates quasi statically. A discussion 

is made of our results in Section 5 followed by a conclusion (Section 6).  
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II - METHODOLOGY AND RESULTS 

 

II-1. Model and electric potential  

II-1-1. The model 

The model we shall refer to is shown in Figure 1. This is a linear isotropic 

elastic medium to which we attach a Cartesian coordinate system ix . It 

contains a planar crack in the 31xOx -plane that extends from cx 1
to c and 

runs indefinitely in the 3x -direction. Coplanar to the crack, and on both sides 

of it, a dislocation-free zone ( exc  1 ) and a localized crack-tip plastic 

zone ( axe  1 ) are present. This model originates from Bilby et al. [2] in 

their study of the spread of plastic yielding from a notch. They have 

introduced one common description of cracking and plasticity in terms of 

dislocations. Both the crack and the plastic regions are represented by 

continuous distributions of dislocations. 

 

 
Figure 1: An elastic-plastic crack system located in the 31xOx -plane. The 

crack extends from cx 1 to c with a straight front running 

indefinitely in the 3x -direction. On both sides of the crack, a 

dislocation-free zone exc  1 and plastic domain axe  1 are 

present. The system is subjected to uniform applied tension a in 

the 2x -direction (see text). 

Later on, a dislocation-free zone (DFZ) between the crack and the slip 

dislocations has been introduced into the analysis by Chang and Ohr [16- 18]. 
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A DFZ allows high stresses to be attained at the tip of the crack, a necessary 

condition for brittle fracture propagation. This model of elastic-plastic crack 

explains quite well the relationship between applied stress, yield stress and 

parameters c, e and a (Bilby et al. [2]; Anongba and Vitek [19]). We can 

therefore expect this modelling to give appropriate values of the 

electromagnetic fields in presence of crack and localized plasticity at crack 

tip. In many experiments, dislocation generation is observed from the tip of 

the crack prior to crack motion. Anongba and Vitek [19] have shown that the 

condition 2G holds when the plastic zone is fixed at the initiation stage of 

crack propagation and they provide an appropriate expression for G.  

We shall restrict ourselves to mode I loading only (uniform applied stress a

in the 
2x -direction). Both the crack and the plastic domain are 

mathematically represented by planar continuous arrays of infinitely long 

straight edge dislocations (Burgers vector )0,,0( b , 0b ) lying parallel to the 

3x -axis. The dislocations are in equilibrium, can climb freely in the crack but 

must overcome a friction stress y (> a ) representing the yield stress in the 

plastic region.  

II-1-2. The electric potential  

To calculate the electric potential, we assume as in metals (Section 1) that it is 

proportional to the dilatation of the lattice. We begin with the contribution 

due to a single dislocation and then, by superposition, display the results for 

the isolated crack (i.e. a crack with no plastic zone) and the elastic-plastic 

crack of Figure 1.  

Consider an edge dislocation (Burgers vector )0,,0( b ) at the origin that lies 

indefinitely in the 3x -direction. The dilatation 
D at a point P with 

coordinates ),,( 321 xxx is proportional to 
i

ij where )( ij is the stress tensor. 

In the present geometry, )( ij may be taken from Anongba [20, 21] or 

Anongba et al. [22]; this gives  

     r

b
D









cos

1

21

2












 ;                                                                           (1) 

 is Poisson's ratio, r and  are the associated cylindrical coordinates (see 

Figure 1) with 
2

2

2

1

2 xxr  . In metallic materials, the electric potential )(xVD



, OPx 


, round the dislocation is proportional to D as (Landauer [23]; 

Dexter [24]; Nabarro [1]; Brown [25]):  
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     r
A

r

b

q

E
cxV F

D









coscos

1

21

2
)( 0 















.                                             (2) 

Here mkE FF 2/22 where
Fk is the conduction electron wave number on the 

Fermi surface, m and q the electron mass and charge,  has its usual meaning 

and 0c is a constant, given by Nabarro [1] as 15/40 c . 

By superposition, the electric potential CDV round the crack system in Figure 1 

can be written as  

     
 

  '

1

'

12

2

2'

11

'

11)( dxxf
xxx

xx
AxV CD

a

e

c

c

e

a
CD





















                                        (3) 

where the dislocation distribution function )( 1xf CD is such that 11)( dxxf CD

gives the number of dislocations in the interval 
1dx  at the position

1x  ( cx 1

and axe  1 ) and 0)()(  afef CDCD . Analytical expressions for CDf

have been given in different forms by Chang and Ohr [18] and Anongba and 

Vitek [19]; the latter expression appears simpler to deal with and will be 

adopted in the following. Before displaying the result of the integration in (3), 

we shall first write the electric potential CV for the isolated crack (i.e. the crack 

of Figure 1 only, without the plastic regions axe  1 ). 

Bilby and Eshelby [4] have given the distribution function of crack 

dislocations for the isolated crack to be 2

1

2

111 /)( xcCxxf aC   (

)1(2/1   bC ,  the shear modulus), that we use and, by integration, we 

obtain  

     
  )](Re[2/)()()( zgzgzgxV CCCC 


                                                  (4) 

with 

     
  

















222

2

1)(
czz

z
Azg aC                                                               (5) 

where qEcCAA F  /)21(/ 01  , 21 ixxz  is a complex variable and 

Re[...] denotes the real part of the complex quantity inside the brackets [] . 

For the elastic-plastic crack of Figure 1, Anongba and Vitek [19] have given 

the dislocation distribution function CDf in the form: for cx 1 , 
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 
  

    






















 kxZx

xexc

xa

cae

xce

C

kF
xf

y

CD ,sgn
),2/(2

)( 1112

1

22

1

2

2

1

2

22

1

22

2

1

1 



  

and 

    kxZx
C

kF
xf

y

CD ,sgn
),2/(2

)( 1212

1

1 



    for   axe  1 ;                    (6)  

here  

   2222222 / caeeack  ,   111 /sgn xxx  ,     1

1

11 /1sin xnx  , 

    kxnx /sin 1

1

12

 ,        2

1

222

1

22

1 / xcexecxn    

and F and Z are the elliptic integral of first kind and Jacobi's zeta function, 

respectively. With the help of this expression for CDf , we can perform the 

necessary integrations in (3) and write CDV  in the following form:  

     
  )](Re[2/)()()( zgzgzgxV CDCDCDCD 


                                            (7) 

with  

 
 













 ),,2/(2),2/(/2)(

22

2
2

222

22
2 k

ca

c
a

cae

ce
kFAzg yCD   

             
     

  
 














 kzn

czez

zaz
ec

ez

zkFea
),(,2/2

),2/(2
2222

222
22

22

222




 

                           kecZlnkznZlnkzmZln ,/,2/),(,2/),(,2/ 22   

                               







 ),,2/(

22

22

k
ca

ea
Zln  ;                                                 (8)  

where  

     22222222 /)( ezcaczeazm  ,     222222 /)( zcezeczn   

and  and Zln are the elliptic integral of third kind and a "special" function 

defined as (here  , n and k are variables) 
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  




0

2 ),(sin1ln),,( kdZnknZln . 

In this definition of Zln , ln  is the natural logarithm, dZ is the differentiation 

of the Jacobi's zeta function ),( kZ  with respect to variable  only (i.e. 

   dZdZ  / ).  

 

II-2. Electric and magnetic fields 

 

The electric potential )(xV


and electric field )(xE


are related by the relation 

VgradE  ; when, as in the present study, V can be written as 

)](Re[)( zgxV 


with
21 ixxz  , we arrive at  

     






















0

]/Im[

]/Re[

)( zg

zg

xE


                                                                           (9) 

in the basis  321 ,, eee


of the Cartesian system 321 xxOx (Figure 1). Im[...]

denotes the imaginary part of the function inside the brackets[]. CE and CDE

are obtained from (9) with g taking the values Cg and CDg respectively.  

Because the electric field E depends on parameters c, e, a and a , it depends 

implicitly on time through the variation with time of these parameters. 

Consequently, an associated induced magnetic field B exists that can be 

found from Maxwell's equations. In a linear isotropic medium, this induced B

is linked to E by  

     

 E
t

B
rot 10

10


 

















;                                                                          (10)   

0 and 0 are the electric and magnetic constants; 1 and 1 are the relative 

permittivity and permeability, respectively. Actually, we should add to the 

electric field an additional term 'E corresponding to the temporal variation of 

the magnetic field through the relation  

     tBErot  /' .                                                                                     (11) 
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Now assuming in a similar way as E (9), 'E to be independent of 3x with no 

component along the 3x -direction, (11) leads to 0/  tBi , 1i and 2, where 

iB is the component along the ix -axis of B . As a consequence iB ( 1i and 2) 

are constant with time and can be set equal to zero if initially there is no 

current. In the following, we shall restrict ourselves to the calculation of B

(10) assuming B  to be parallel to 3x only. Also, 'E is viewed as of second 

order in magnitude, and will no more be considered. We thus obtain  

       3101033 /)](Im[ etzgeBB


  .                                                 (12) 

Again, CB (isolated crack) and CDB (elastic-plastic crack, Figure 1) are 

obtained from (12) with g taking the values Cg and CDg . We stress that we 

assume no current for simplicity. This applies to pure metals. Foreign ions, 

introduced into the lattice, could flow under the electric field and generate 

electric currents.  

The Poynting's vector S is the instantaneous energy that the electromagnetic 

wave transmits per unit time through a unit surface perpendicular to the 

direction of wave propagation. It reads  

     10

B
ES   

         






















0

]/Re[

]/Im[

10

3 zg

zg
B


                                                                          (13) 

with CS


,for the isolated crack, and CDS , for the elastic-plastic crack, both 

defined in a manner similar as previously.  

 

II-3. Quasi static propagation of an isolated crack  

 

We consider here that the crack is isolated and we present graphical 

representations of various electromagnetic quantities. We restrict ourselves to 

the first quadrant (i.e. both 1x and 2x 0 ) as justified into two steps: (1) Cg

and zgC  / are even and odd respectively, this reduces the domain to 

2/arg2/   z (i.e. 01 x ). (2) Changing the sign of 2x in Cg and

zgC  / is equivalent to taking their complex conjugates because z changes 
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into z . Hence, in the expression of the electric field, ]/Re[ zgC  remains 

unchanged while ]/Im[ zgC  changes sign only. We can conveniently ascribe

2x to positive values only.  

II-3-1. Electric potential 

The electric potential )(xVC


, shown in Figure 2a, is a surface that consists of 

various coloured bands. To each strip is associated a small range of values 

reported for convenience on a vertical scale (see in Figure 2a).  In the 31xOx -

plane ( 02 x ), the electric potential is constant for cx 1
(zone occupied by 

the crack), blue colour at the bottom of the vertical scale to which is attached 

the value (-1). For cx 1
, the potential, from zero (

1x large), increases  
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Figure 2: (a) Electric potential CV (4). (b) Spatial distribution of the 

magnitude CE  of electric field (9)(14) at different ),( 21 xx and 

(d) CE values (17) calculated at three fixed positions 

),,( 3xrP  , 0 , 4/ and 2/ , as a function of crack half-

length c. We assume the Griffith relation(16) to hold at any time. 

(c) Lines of electric field constantLc (15).  

Indefinitely when
1x tends towards the tip of the crack ( cx 1

). In the 32xOx -

plane ( 01 x ), the electric potential increases in the form of a parabola, from 

a value (-1) ( 02 x )(blue, at the bottom of the vertical scale), up to a value 

close to zero (brown) for
2x large. In 

21xx planes ( constant3 x ), positive 

constant aC AV / contours have concentric shapes that shrink about the crack 

tip. The associated aC AV / values increase indefinitely.   

   

II-3-2. Electric field 

 

The electric field )(xEC


is given by (9) with   

       2/322

2

cz

c
A

z

g
a

C







 .                                                                        (14) 

At ),,( 3xrP  , the following points can be quoted:  
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 In the 31xOx -plane ( 0 ), the 
1x -component of CE , )1(CE , is equal 

to zero for cr  because zgC  / is pure imaginary. The reduced
2x -

component of CE , aC AE /)2( , is then negative and given by  

 322

2 1)2(

rc
c

A

E

a

C





 . 

For cr   , zgC  / is pure real and )2(CE is zero while aC AE /)1( is 

positive and reads 

 322

2 1)1(

cr
c

A

E

a

C





 . 

 In the 32xOx -plane ( /2  ), zgC  / is pure imaginary, )1(CE is 

identically zero and aC AE /)2( is negative and given by 

 322

2 1)2(

rc
c

A

E

a

C





. 

 For /20   , the electric field CE is tangent to the lines of electric 

field at any point P, by definition; this corresponds to the condition 

0)()(  PEPxd C


where )(Pxd


is an infinitesimal displacement 

vector. Using this condition, it is easy to show that the lines of field 

are given by 

 

constant)](Im[)(  zgxL CC


.                                                         (15) 

Constant CL contours are shown on Figure 2c. The sense of CE along these 

curves may be deduced from (9) and (14).  

The spatial distribution of the magnitude CE  of the electric field is shown 

on Figure 2b. In 31xOx , CE increases indefinitely when 1x tends towards c 

from both sides. CE takes a non-zero value (value 1.12, purple) for 01 x ; it 

decreases to zero for 1x large (above c). In 32xOx , CE decreases, from the 

value(1.12, purple) ( 02 x ), towards zero when 2x increases.  In 21xx (

constant3 x ), spatial positions corresponding to constantCE , form 

circles that shrink about cx 1  with associated CE  increasing indefinitely. 
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We would like to express quantity )(PEC  at a given position ),,( 321 xxxP

with cylindrical coordinates ),,( 3xr  as a function of the crack half-length c. 

Because CE depends on the applied stress a , it is necessary to specify the 

dependence of a with respect to c. In the present study, we shall assume that 

the Griffith relation 2G is satisfied at any time. This leads to 

 

     
  22

1

1

2

a

E
c






                                                                                      (16)  

 

where E is Young's modulus. We can write, making use of (9), (14) and (16), 

that  

     

2/3

22
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







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 

cz
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
                                                                      (17) 

with 

     
 2

0

1

2)21(












 E

q

Ec
A F . 

 

Figure 2d displays CE for three different points ),,( 3xrP  , 0 , 4/ and

2/ , as a function of c. When 0  , the point P lies in 31xOx , the plane of 

the crack. From the value 0c , CE increases (from the value zero) 

indefinitely when c tends towards P ( rc ). When rc   , CE
 
decreases 

gradually when c increases. For the two other positions of P,  4/   and

2/ , CE increases from zero ( 0c ) up to a maximum for c about r; then

CE  decreases continually when c further increases in the range of large 

values.  

 

II-3-3. Magnetic field  

 

)(3 xB


, the 3x -component of the magnetic field (12), is represented in Figure 

3a and b. We assume that Cg depends on time through a and c; we link a to 

c by (16), this gives 
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In 31xOx ( 02 x ), 3B (Figure 3a) is zero for cx 1
; for cx 1

, 3B has the shape 

of a parabola; it increases, from the value zero for 01 x (small strip of purple 

limited by the parabola), towards infinity when 
1x tends towards c. The 

corresponding stripes are displayed vertically and are limited by a parabola.  

Out of 31xOx ( cx  10 ), 3B (Figure 3a) takes values close to zero (negative 

for both 
2x small and

1x sufficiently close to c) and then increases slowly to 

reach a maximum when 
2x increases; further increase of 

2x leads to a 

decrease of 3B . Out of  31xOx ( cx 1
), 3B (Figure 3a) has negative values 

close to zero for 
2x small; when 

2x increases,
 3B first decreases up to a 

negative minimum (the magnitude of which increases as 
1x tends towards c); 

then 3B increases from that minimum with
2x . A boundary curve, that is  

  
 

Figure 3: 3x -component 3B (18) of the magnetic field CB (12) for the isolated 

crack: (a) spatial distribution at different ),( 21 xx for fixed crack 

half-length c and (b) 3B values measured at three fixed positions 

),,( 3xrP  , 0 , 4/ and 8/ , as a function of crack half-

length c assuming the Griffith relation(16) to hold. 
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visible on Figure 3a, separates region 1 (with 3B positive) from region 2 (with 

3B negative). 

We have represented 3B (Figure 3b) at three different positions ),,( 3xrP  (

0 , 4/ and 8/ ), as a function of crack half-length c.  When 0 (i.e. P 

on the 31xOx plane) 3B is zero for rc  . In the region rc  , 3B increases 

indefinitely when c decreases towards r. For the two other positions of P, 

4/  and 8/ , 3B (from the value zero for 0c ) displays a single 

oscillation with a negative minimum and positive maximum for rc  and 

rc  respectively. 3B tends towards zero for large values of c. Note that for 

2/  ( 32xOx -plane, 01 x ), 3B (18) is identically zero.  

 

II-3-4. Poynting's vector 

 

To illustrate the Poynting vector S (13), we can make use of (18) for 3B and 

(14) for zgC  / . In the 31xOx -plane ( 02 x ), S is equal to zero for cx 1

because 3B is zero; for cx 1
, zgC  / (14) is pure imaginary, therefore the

2x -

component of S is equal to zero because it is proportional to 0]/Re[  zgC . 

Consequently, S is parallel to the 1x -direction and its sense is directed 

towards the tip of the crack. Observe that in the 32xOx -plane 0S because 3B

is identically zero. Out of the 31xOx
 
and 32xOx planes, it is convenient to 

make use of the lines of Poynting vector. We define a line of Poynting vector 

as a curve whose tangent at running point P is parallel to )(PS . In a similar 

way as for the lines of electric field, we find that the lines of Poynting vector 

are given by the condition  
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.                                                        (19) 

Constant Ls contours are displayed on Figure 4b. The Poynting vector is 

tangent to these contours. 

The intensity of the electromagnetic wave at position P is defined as the 

temporal average   S of the magnitude of the Poynting vector:  

     

dtS
T

S

T


0

1
                                                                                   (20) 
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where T is a time interval for the integration. Assuming the crack to expand 

with time, with half lengths 
1c and

2c at 0t and Tt  respectively, we can 

write (with the help of (12) and (13)) 
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where Tccvc /)( 12  is the distance travelled by the crack divided by the 

travelling time T.  cv may be viewed as an average crack expansion 

velocity. With the help of (16) to (18), we can further manage  S  to read  
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with 
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where )/(~
1211 cccc   and )/(~

12 cczz  .  

The spatial distribution of  S is shown on Figure 4a ( 01 c and cc 2
). 

 S is relatively small outside the domain ],[ 21 cxcx  and increases 

considerably inside. Constant  S contours have an elliptical shape that 

shrinks gradually when  S  increases. Figure 4c may provide a better 

understanding of the behaviour of  S  . On Figure 4c, we have reported 

 S  (22), ( 01 c and cc 2 ) at three different points ),,( 3xrP  ( 8/  ,

4/ and 3/ ), as a function of the crack half-length c. The position with 

8/  is closest to 31xOx , the plane occupied by the crack. The behaviour of  
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Figure 4: Intensity  S (22) of the electromagnetic wave: (a) spatial 

distribution at different ),( 21 xx and (c)  S values measured at 

three fixed positions ),,( 3xrP  , 8/  , 4/ and 3/ , as a 

function of crack half-length c assuming the Griffith relation(16) 

to hold. (b) Lines of Poynting vector corresponding to 

constantLs (19).  
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 S is common to all points. Starting from the value zero for 0c , 

 S increases with c up to a maximum at 5.5/ rc for 8/  and then 

decreases slowly, the maximum of  S increasing rapidly when  tends 

towards zero.  

 

 

III - DISCUSSION 

 

In absence of crack-tip plasticity (isolated crack), we have assumed the crack 

half-length c to depend implicitly on time and have linked a to c through the 

Griffith relation 2G . By doing so, we have introduced a quantity 

cvdtdc / , the velocity of the tip of the crack. The equilibrium condition 

requires that cv be constant (quasi static crack propagation). A similar 

procedure can be adopted when the crack is elastic-plastic (Figure 1) but we 

have different possible scenarios (A and B, for example) with respect to the 

variation with time of the various parameters c, e, a and a : 

A. We may assume that c is constant and a varies with time; then a is 

linked to a through Chang and Ohr [18] condition that imposes a finite 

stress at the plastic zone boundaries (see also Anongba and Vitek [19] 

for the form below):  

 

),/,2/(
2

222

22

22

kcke
cae

ce

y

a 








                                              (24) 

 

(for the definition of the various parameters, see (6)). The 

experimental situation corresponds to a spreading of the plastic zone 

under loading while the crack length is fixed. This treatment 

introduces a new parameter avdtda / . 

B. This scenario corresponds to c variable, while the plastic zone is fixed  

at the initiation stage of fracture propagation. We can then proceed by 

making use of the Griffith relation 2G with the appropriate value 

of the crack extension force G given by Anongba and Vitek [19].  
 

The resulting temporal dependences (so far described) for the electromagnetic 

fields correspond to quasi static changes of the configuration of the crack 

systems.  



 Rev. Ivoir. Sci. Technol., 20 (2012) 1 - 23  19 

P. N. B. ANONGBA 

With regard to the application of the results of the present study, it is 

appropriate to refer first to ice. Because Evtushenko et al. [10] and Petrenko 

[8, 9] attribute some importance to lattice dilatation as a possible cause for the 

emission of electromagnetic radiation observed during the fracture of ice 

under loading. They propose expressions for the electric potential and electric 

field that involve lattice dilatation. The dilatation CD  is related to CDV (7) by  

     
)()/()( 0 xVEcqx CDFCD


 .                                                                  (25) 

Introducing CD  (25) into previous results for ice (see for example Petrenko 

[8, 9] allows a treatment of the emission of electromagnetic radiation in ice 

when both cracks and plastic zones are present. Note that the yield stress y is 

taken into account by the modelling. In absence of plasticity, the dilatation C

and the electric potential CV are also related by (25). Petrenko [9] has 

performed the following experiment in ice: fracture specimens with edge 

notch are subjected to tensile tests in which the applied stress is oscillatory; 

the associated electric potential is measured at different positions round the 

notch. Agreement between measured and calculated values of the potential is 

obtained. The electric potential is proportional to the dilatation of the lattice.  
 

Petrenko [8, 9] did not discuss quasi static crack propagation on the line 

expounded in Section 4 that uses the Griffith 2G criterion to link the 

crack length to the applied stress. The treatment in Section 4 is of interest 

because physical quantities are revealed: crack-front velocity dtdc / , average 

crack extension velocity  cv and surface energy  . The parameter A is 

proportional to  . Hence CE (17) and CB  (i.e. 3B (18)) are proportional 

to   (Figure 2d and 3a and b, respectively); the corresponding intensity

 S (22) of the electromagnetic wave is proportional to  (Figure 4a and 

c). CB is proportional to dtdc /  ( Figure 3a and b) and  S  (22) to  cv  

(Figure 4a and c). As the crack is expanding with time (i.e. c), 

electromagnetic quantities increases in magnitude up to a maximum and then 

decreases slowly at large distances far away from position P (see Figure 2d 

for CE and Figure 4c for  S ). The component 3B  of the magnetic field 

on the over hand displays a single oscillation (Figure 3b). Petrenko [9] 

reports two types of signals (recorded by antenna) captured from a growing 

crack. Type 1 signal increases during crack propagation up to a maximum and 

then relaxes after crack arrest. Type 2 signal displays oscillations. Both types 
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of signal have been attributed to pre-existing intrinsic electric fields in ice 

although type 1 signal could correspond to quasi static propagation of the 

crack. This suggests re-examination of measured signals.  

With regard to the dependence of the electromagnetic fields upon surface 

energy, we may refer to the experimental work of Misra and Kumar [6] with 

metallic materials. These authors have measured a linear variation of the 

electromagnetic radiation peak voltage with bond energy; this agrees with the 

proportionality between  S  (22) and  given by the present analysis 

(Section 4). Similarly, attention should be paid to experimental evidence of 

the dependence of the electromagnetic fields upon crack extension velocity. 

This brings us, for example, to the work by Frid et al. [13]: these authors have 

found an empirical equation that fits quite well electromagnetic radiation 

signals displaying oscillations in the form of a pulse. The signals are recorded 

during compression fracture of rocks (carbonate and igneous) and transparent 

materials (glass, PMMA and glass ceramics). They propose a derivation of 

the envelope of the pulse that is found to be proportional to the average crack 

velocity. In their modelling, they assume the envelope of the pulse to be 

associated with the fracture process itself and signal oscillations to vibration 

of charge carriers about equilibrium positions. This agrees with the result that 

the intensity of the electromagnetic wave  S (22) is proportional to the 

average crack velocity  cv . 

 

     Actually the results of the present study find application as long as the 

dilatation of the lattice caused by dislocations and cracks produces an electric 

potential. This is believed to be the case in metals (Nabarro [1]; Molotskii 

[26]; Misra et al. [27]) in addition to ice (Evtushenko et al. [10]; Petrenko [8, 

9]).The emission of electromagnetic radiation in metals has been observed in 

a number of different situations: at the onset of plastic flow, at different 

deformation stages on the stress-strain curves, at the initiation stage of crack 

propagation (for a review, see Misra et al. [27]). For these various situations, 

one must first find an appropriate model of the arrangement and dynamics of 

the dislocations and then proceed to calculate the associated lattice dilatation; 

in general, this is a formidable task. The model in Figure 1 is presumably 

suitable in the situation of localized plasticity at the tip of the crack. Detailed 

confrontation with experiment is missing at present. Because available 

experimental works do not connect the emission of electromagnetic radiation 

with the size and location of crack-tip plastic zones.  
 

Recently, Misra et al. [27] have proposed a theoretical model for the emission 

of electromagnetic radiation associated with plasticity and fracture in metallic 

materials. This work is based on a proposal made earlier by Molotskii [26] 
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that imposes the dislocation dipole moment to be proportional to the whole 

length of the dislocation. We first stress the weakness of this assumption and 

then indicate some difficulties with the modelling by Misra et al. [27].  

 

Molotskii [26] working hypothesis can be described as follows. Assume a 

straight edge dislocation at the origin lying along the 3x -direction (use 

Figure 1 for the ix -directions) with Burgers vector )0,0,(b in the
1x -direction. 

Under action of an applied stress, at a given time, its shape in the glide plane

31xOx is given at position ),0,0( 3x by ),( 3 tx . He then considers that the 

dislocation, at any time, has a dipole moment p per unit length constant, 

independent of position 3x . By doing so, Molotskii [26] finds that the dipole 

moment of the dislocation is proportional to the dislocation length and 

increases for small deviation from the straight edge position. Molotskii's 

result is difficult to accept because the dipole moment per unit length of a 

dislocation is associated with the dilatation of the lattice (Nabarro [1]) and 

therefore depends on dislocation character; it decreases to zero for screws in 

linear elasticity (the lattice dilatation for screws is zero). 

To see the weakness of Molotskii's assumption that the dislocation dipole 

moment increases with its length, consider a straight edge dislocation 

segment with length ABL  along 3Ox that bows out in its glide plane from its 

initial straight edge position. The result is an increase of the dislocation 

length. Now assume its curved shape to consist of edge and screw portions 

only. Because all the screw portions have zero dipole moment, we discover 

that the curved dislocation has a dipole moment essentially identical to that of 

the segment AB along 3Ox , contrary to Molotskii's working assumption. 
 

Misra et al. [27] investigate electromagnetic radiation as a function of 
deformation up to fracture propagation using specimens with edge notch tested in 

tension. Plastic yielding from the notch precedes crack propagation. A 

specimen geometry with edges (see Figure 1 to 3 in Misra et al. [27]) is used 

to elaborate a theoretical analysis that presents serious difficulties (A and B):  

 

A. According to Misra et al. [27] the straight edge dislocation is parallel 

to Oz, has Burgers vector  along Ox and is associated with a 

supplementary half-plane of atoms Oyz (y > 0). The dipole moment of 

the dislocation is parallel to Oy. As the dislocation bows out with time 

from the straight edge position in the Oxz slip plane, its whole curved 

shape can be approximated by small straight edge and screw portions. 

The edge portions all have a dipole moment parallel to Oy and the 

screws contribute nothing. Consequently the variation with time of the 
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dipole moment of the dislocation remains parallel to Oy. It is 

impossible for the considered gliding edge dislocation to have the first 

temporal derivative of the dipole moment in the z-direction as 

assumed without any demonstration by the authors. We stress that a 

variation of the dislocation dipole moment lying in the z-direction 

would imply necessarily a spreading of the dislocation in the Oyz 

plane which contains both the dipole moment and the dislocation line 

direction Oz; this corresponds to a climbing motion of the edge 

dislocation, a mechanism that is not considered by the authors.  

B. Misra et al. [27] also use the incorrect assumption of Molotskii [26] 

that stipulates that the dislocation dipole moment increases with its 

length.  
 

In view of the difficulties indicated above, treatments by Molotskii [26] and 

Misra et al. [27] appear to be incorrect.  

 

IV - CONCLUSION 

This work provides formulas for the lattice dilatation, electric potential and 

electric field corresponding to an elastic-plastic crack and a brittle crack 

without crack-tip plasticity, under mode I loading. Taking account of an 

implicit variation with time of these quantities, this work gives expressions 

for the induced magnetic field and the associated Poynting vector. The results 

are applied to the quasi static propagation of an isolated crack assuming the 

Griffith condition 2G to hold; this reveals the relationships between the 

electromagnetic fields and various parameters such as crack-tip velocity and 

surface energy. It is indicated how a similar application can be performed 

when the crack is associated with a plastic zone; this would provide a better 

interpretation of experimental findings. The present study applies first to pure 

metals but could be adapted to any material where lattice dilatation produces 

an electric field: ice is discussed as one example. Finally the inadequacy of a 

number of models, proposed to explain the emission of electromagnetic 

radiation in metallic materials, is demonstrated.  
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