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ABSTRACT  
 
A simple contact algorithm based on the penalty approach is implemented in a 
two-dimensional Reproducing Kernel Particle Method (RKPM) to simulate 
mechanical contact involving large deformation of mechanical structures. In 
order to reduce the computing time a lower integration scheme, two-point 
quadrature for quadrilateral background mesh, is used. The standard Taylor bar 
impact problem simulation is used to validate the results obtained using the 
presented contact algorithm by comparing with those obtained using the 
commercial Finite Element Analysis code LS-DYNA3D; an excellent agreement 
is obtained. 
 
Keywords : RKPM, lower integration, mechanical contact, deformation. 

 
 
RÉSUMÉ 
 Simulation numérique  des problèmes de contact mécanique en 
utilisant la RKPM avec une méthode d’intégration réduite  
 
Un algorithme simple, basé sur l’approche pénalité, est implémenté dans la 
RKPM (Reproducing Kernel Particle Method) à 2D pour simuler les 
problèmes de contact mécanique produisant de large déformation. Pour 
réduire, de façon significative, le temps de calcul une méthode d’intégration, 
à deux-points dans les cellules d’intégration du maillage d’arrière plan, est 
utilisée. Le problème standard de simulation de l’impact de la barre de Taylor 
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est utilisé pour valider les résultats obtenus par l’algorithme présenté en les 
comparant à ceux obtenus par l’utilisation du logiciel commercial d’Analyse 
des Eléments Finis LS-DYNA3D ; une excellente concordance est obtenue. 
 

Mots-clés : RKPM, intégration réduite, contact mécanique, déformation. 
 
 
I - INTRODUCTION 
 

In computational mechanics, the simulation of large deformation of 
mechanical structures has been a challenging task. Significant amount of 
work has been accomplished using the finite element methods. Nevertheless, 
standard finite element approaches are still ineffective in handling extreme 
material distortions. To overcome such difficulties, considerable effort has 
been devoted to the development of meshless or meshfree methods. Among 
the meshless methods, the reproducing kernel particle method (RKPM) [1-7], 
has been found to be very effective for large deformation analysis as 
encountered in metal forming [2, 6-8].   
Like the others meshless methods, the RKPM is characterized by its high 
CPU cost. In our implementation of RKPM the background mesh is currently 
used for integration purposes. The integration of the stresses for the 
calculation of internal forces involves several loops over the gauss quadrature 
points. Therefore reducing the number of gauss quadrature points, without 
affecting the accuracy of the results, will improve significantly the 
computation efficiency. In this work, the two gauss quadrature points rule, 
developed by K. SIDIBE et al.  [5], is used and compared with the traditional 
2×2 gauss rules. 
Also, the simulation of the mechanical contact is a challenging task [6-9]. In 
this work, a simple contact algorithm “particle to segment contact algorithm” 
for two-dimensional RKPM is developed and implemented in our RKPM 
code. The standard Taylor bar impact problem simulation is used to prove the 
correctness of the algorithm and its implementation in our RKPM code 
comparing the results with those obtained by using the commercial Finite 
Element Analysis code LS-DYNA3D.   
 
 
II - FUNDAMENTAL CONCEPTS 
 

II-1. RKPM discretization 
 

The RKPM has been found to be very effective for large deformation 
analysis [2]. This work focuses on the 2D RKPM computer implementation 
issues. 
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The RKPM uses the finite integral representation of a function u(x) in a 
domain Ωx. 

∫Ω Ω−=
x xa

a duΦu )()()( yyxx
       

 

where )(xau  is the approximation of function u(x), )( yx −aΦ is the kernel 
function with compact support a [1]. 
Discretizing the domain Ωx by a set of particles {x1, x2, …, xNP}, where xI is 
the position vector of particle I , and NP is the total number of particles, the 
integral is approximated by the following summation: 

∑
=

=
NP

I
II

h uu
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)()()( xxNx
       (2) 

 

where )(xN I  is the RKPM shape function defined to be  
 

IIaII Φ ∆VxxxxxCxN )();()( −−=       (3) 
 

);( IxxxC −  is the correction function introduced to improve the accuracy of 

the approximation near the boundaries and I∆V  is the volume of particle I 
and the subscript h is associated with a discretized domain. 
 
II-2. Lower integration rule 
 

The integration of the stresses for the calculation of internal forces involves 
several loops over the gauss quadrature points so high CPU cost. Therefore to 
reduce the CPU, instead of the traditional 2×2 gauss rules (called here Q4); 
K. SIDIBE et al. [5] introduce and validate a lower integration rule in which 
two gauss quadrature points are set in the integration cell as shown in Figure 
1-c. Applications of this integration method are done for metal forming 
analysis in this paper. 
 
 

 
 

Figure 1 : Quadrilateral cell with Gauss quadrature points 
 

     (a) Q4  (b) Splitted cell   (c) Q2 

 

(1) 
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II-3. Particle to segment contact algorithm in 2D RKPM 
 
Consider a system of two bodies arbitrarily designated by slave body and 
master body. The master surface is discretized by a set of master particles 
connected into piecewise linear segments, and the slave surface by a set of 
slave particles. Every time step, the algorithm first must predict the 
accelerations, velocities, and displacements from explicit time integration 
routine. The resulting displacements are then used to determine whether or 
not contact has taken place.  
The algorithm assumes that slave particles can be penetrating the master 
surface as shown in Figure 2. xm and xs stand respectively for the spatial 
coordinates of master and slave particles; while nI and tI are the normal and 
the tangential unit vectors of the master segment I .  
 
 
 
 
 
 
 
 
 
 
 

Figure 2 : Discrete contact surfaces 
 
To ensure that the two surfaces do not interpenetrate, the contact force 

applied to the penetrating slave particle to cancel its normal penetration Jg
 

is calculated as follows: 
 

( ) ( ) ( ) InI
J

n Jf
gJ

J nf =×= n
∆t

m
2

s

     (4) 
 

where ∆t is the time step size, and ( )Jsm is the mass of the slave particle J. 
On the tangential direction of the contact surface, the classical Coulomb 
friction model is adopted in modeling friction between slave body and master 
body. The tangential force exerted by the master surface on a slave particle J 
is evaluated as  

( )
)(

)(
,min )( J

J
f

TR

TRst
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v
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      (5) 
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Slave particle J 

Master segment I 
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where kµ friction coefficient on the contact interface and  

)(
∆t

)(ms J
J

TR
st
t(J) vf −=

        (6) 
 

where )(JTRV  is the tangential component of the relative velocity of the 
slave particle J with respect to the associated master segment. 
The force vectors calculated above are the exact nodal force vectors for each 
penetrating particle to satisfy the impenetrability condition and friction 
condition at interface. With RKPM the exact nodal force is redistributed to a 
non-local ‘fictitious force’. The fictitious force vector for the particle I is 
calculated as follows: 
 

)( JIJ xNff I ∑=
       (7) 

 

The contact subroutine called by the main program for contact problem can 
be outlined as follows: 

i. Find the penetrated slave particles; generate an array containing 
slave particles penetrations, information about penetrated slave 
particles and the corresponding master segment; 

ii.  Compute normal and frictional forces and redistribute them to the 
particles; 

iii.  Calculate the incremental acceleration due to contact 
interactions; 

iv. Update velocities and displacements taking into account the 
contact interactions; 

v. Return to the main program. 
 
 
III – RESULTS AND DISCUSSION 
 
The simulation of Taylor bar impact and the metal forging will be presented 
in this section. The elasto-plastic material model with isotropic strain 
hardening is used for the material modelization in all the examples.  
 
III-1. Taylor bar impact 
 

A cylindrical bar impacts a rigid surface. The data of the problem and the 
material parameters are defined in Tables 1 and 2 respectively.  Since the 
problem is axially symmetric, axisymmetric  formulation of the governing 
equations is used and only half of the cylinder is discretized as shown in 
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Figure 3. The results are compared with the solution obtained using the 
commercial code LS-DYNA3D.  
 
 
 
 
 
 
 
 
 
 
 
Figure 3 : Taylor bar impact:(a) Continuum domain(b) Discretized domain 

 
At the end of the simulation (t=80µs) the results obtained by RKPM and LS-
DYNA3D are shown in Table 3 and the corresponding shapes of the bar at the 
contact surface are shown in Figure 4. The time histories of the radius and the 
height of the bar are shown respectively in Figure 5 and Figure 6. Almost the 
same results are drawn by RKPM Q2, RKPM Q4 and LS-DYNA3D. 
 

Table 1 : Data of the Taylor bar impact problem 
 

Parameter Initial 
velocity 

Simulation 
time 

Initial 
radius 

Initial 
height 

Number 
of 
particles 

Time 
step 
size 

Friction 
coef-
ficient 

Value 227.0m/s 80µs 0.0032m 0.0324m 1071 
(21×51) 

5×10-9s 0.0 

 
 

Table 2 : Material parameters of the bar 
 

Parameter Young’s 
modulus 

Poisson’s 
ration 

Initial yield 
stress 

Hardening 
modulus 

Mass density 

value 117Gpa 0.35 400Mpa 100Mpa 8930kg/m3 
 
 

Table 3 : Comparison of the radius and the height of the bar by various  
                 methods at the end of the simulation (t=80µs)  
 

Solution Methods Radius Height 

RKPM Q2 7.11 mm 21.59mm 

RKPM Q4 7.06 mm 21.58 mm 

LS-DYNA3D 7.06 mm 21.52 mm 

   (a)                  (b)  
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 (a) RKPM Q4  (b) RKPM Q2  (c) LS-DYNA3D 
 
 

Figure 4 : Impact of Taylor bar: deformed shape of the bar at the end of the  
                 simulation by various methods 
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Figure 5 : Impact of Taylor bar: Time histories of the radius of the bar 
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Figure 6 : Impact of Taylor bar: Time histories of the height of the bar 
 
III-2. Square block forging 
 

The plane strain forging by rigid flat tools is considered in this example. A 
square block of 500mm×500mm is compressed by two rigid flat tools 
moving in opposite direction with constant velocity of 10m/s. The simulation 
time is 0.015s.  The statement of the problem is shown in Figure 7. The 
friction coefficient is chosen to be µ=0.2. The material properties of the 
workpiece, discretized by a set of 441 (21×21) particles, are defined in Table 
2. The evolution of the forging process is shown in Figure 8. 
 

 
 

Figure 7 : Statement of the plane strain forging problem 
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(a) Initial configuration  (b) 40% compression 

 
                                   (c) 60% compression 
 

Figure 8 : Plane strain forging process 
 
 
III-3. Wheel forging   
 
This example aims to simulate the cold forging process of a wheel. As shown 
in Figure 9-b, a cylindrical slug is used to obtain a wheel drawn in Figure 9-a. 
The material parameters used for the simulation are given in Table 4. 
Because of the symmetry of the problem an axisymmetric formulation is used 
and only half of the domain is discretized with 961(30×30) particles. The 
punch and the die, assumed to be rigid and frictionless, are discretized by 
piecewise linear segments to fit the geometry of the wheel. The punch is 
moving downward with constant velocity of 10m/s while the die is fixed. The 
maximum stroke of the punch at the end of the simulation is 20mm.  
 

Table 4 : Material parameters of the wheel 
 

Mass density 
Young’s 
modulus 

Poisson’s 
ratio 

Stress-strain curve 

ρ = 2700 
kg/m-3 

E = 71 GPa ν = 0.3 ( ) MPa01658.079.576 3593.0
pεσ +=

 
 
The finale stages of the deformation are shown in Figure 9- d and e; similar 
results are obtained using RKPM Q4 and RKPM Q2. 
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Figure 9 : Cold forging simulation, statement and deformation process by  
                 different integration schemes in RKPM: 
               (a) Raw slug, (b) Geometry of the wheel, (c) Initial configuration 
               (d)  Final stage RKPM Q4, (e) Final stage RKPM Q2, 
 
 
III-4. Comparison of the CPU times 
 
For the three numerical examples, Table 5 shows the CPU times using the 
two integration methods. The computation was done using a Pentium (R) 4 
CPU – 3.20GHZ with RAM 512Mo.   The difference in the percentages of 
reduction of the CPU time, by the Q2 scheme with respect to the Q4 scheme 
for these examples, is mostly due to the time consumed by the contact 
searching algorithm. It is seen that important reduction of the CPU time is 
obtained by using Q2 scheme. 
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Table 5 : Comparison of CPU Time 
 

Numerical 
Examples 

Integration 
Scheme 

CPU 
time 

Reduction of CPU 
time 

Q4 20mn38s Taylor bar impact 
Q2 10mn44s 

47.98% 

Q4 22mn00s Block forging 
Q2 11mn41s 

46.89% 

Q4 25mn09s Wheel forging 
Q2 13mn06s 47.91% 

 
 
IV - CONCLUSION 
 
The correctness of the computer implementation of the particle to segment 
contact algorithm has been shown through numerical examples, the Taylor 
bar impact and cold forging simulations. The Q2 integration scheme has been 
also found very efficient for faster computation with almost the same 
accuracy as the Q4. The effectiveness of the RKPM for large deformations 
simulation is confirmed. 
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