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ABSTRACT

A simple contact algorithm based on the penaltyr@ggh is implemented in a
two-dimensional Reproducing Kernel Particle Methd&®KPM) to simulate

mechanical contact involving large deformation oéamanical structures. In
order to reduce the computing time a lower integratscheme, two-point
quadrature for quadrilateral background mesh, eflu¥he standard Taylor bar
impact problem simulation is used to validate theuits obtained using the
presented contact algorithm by comparing with thad#ained using the
commercial Finite Element Analysis code LS-DYNA3M excellent agreement
IS obtained.

Keywords : RKPM, lower integration, mechanical contact, defation.

RESUME
Simulation numérique des problémes de contact manique en
utilisant la RKPM avec une méthode d’intégration réluite

Un algorithme simple, basé sur I'approche pénatisé,implémenté dans la
RKPM (Reproducing Kernel Particle Method) a 2D paaimuler les
problemes de contact mécanique produisant de ld&fermation. Pour
réduire, de facon significative, le temps de calowg méthode d’intégration,
a deux-points dans les cellules d’intégration dullage d’arriere plan, est
utilisée. Le probleme standard de simulation depact de la barre de Taylor
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est utilisé pour valider les résultats obtenusljdgorithme présenté en les
comparant a ceux obtenus par l'utilisation du lejicommercial d’Analyse
des Eléments Finis LS-DYNA3D ; une excellente codance est obtenue.

Mots-clés :RKPM, intégration réduite, contact mécanique, défation

I - INTRODUCTION

In computational mechanics, the simulation of lardeformation of
mechanical structures has been a challenging @igiificant amount of
work has been accomplished using the finite elem@thods. Nevertheless,
standard finite element approaches are still ioéitfe in handling extreme
material distortions. To overcome such difficulfieensiderable effort has
been devoted to the development of meshless orfreesmethods. Among
the meshless methods, the reproducing kernel fgariethod (RKPM) [1-7],
has been found to be very effective for large defdion analysis as
encountered in metal forming [2, 6-8].

Like the others meshless methods, the RKPM is chediaed by its high
CPU cost. In our implementation of RKPM the backmye mesh is currently
used for integration purposes. The integration loé tstresses for the
calculation of internal forces involves severaldsmver the gauss quadrature
points. Therefore reducing the number of gauss mxaict points, without
affecting the accuracy of the results, will improwgnificantly the
computation efficiency. In this work, the two gaupsadrature points rule,
developed by K. SIDIBE et al. [5], is used and paned with the traditional
2x2 gauss rules.

Also, the simulation of the mechanical contact shallenging task [6-9]. In
this work, a simple contact algorithm “particlessgment contact algorithm”
for two-dimensional RKPM is developed and impleneeintn our RKPM
code. The standard Taylor bar impact problem sitiuias used to prove the
correctness of the algorithm and its implementationour RKPM code
comparing the results with those obtained by usiveg commercial Finite
Element Analysis code LS-DYNA3D.

Il - FUNDAMENTAL CONCEPTS
I1-1. RKPM discretization

The RKPM has been found to be very effective faigdadeformation
analysis [2]. This work focuses on the 2D RKPM caobep implementation
issues.
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The RKPM uses the finite integral representationacfunction u) in a
domaingy.

() = [ @, (x-y)u(y)dQ, (1)

where u*(x) is the approximation of function xj( P, (x-y) is the kernel
function with compact support a [1].

Discretizing the domaig, by a set of particlesx{, Xz, ..., Xnp}, Wherex; is
the position vector of particle and NP is the total number of particles, the
integral is approximated by the following summation

u"(x) = > N, (u(x,)
E (2)

where N1 (%) is the RKPM shape function defined to be

N, (x) = COGX =X, )@, (X=X, )AV, 3)

C(X:X=X,) is the correction function introduced to improtie taccuracy of

the approximation near the boundaries 4N is the volume of particlé
and the subscrigt is associated with a discretized domain.

[I-2. Lower integration rule

The integration of the stresses for the calculatibmternal forces involves
several loops over the gauss quadrature pointgyeodPU cost. Therefore to
reduce the CPU, instead of the traditional 2x2 gautes (called here Q4);
K. SIDIBE et al. [5] introduce and validate a lowetegration rule in which
two gauss quadrature points are set in the integraell as shown ifrigure
1-c. Applications of this integration method are dome Mmetal forming
analysis in this paper.

+ + + +
— —>
+ <+ + +
(a)Q4 (b) Splitted cell (c) Q2

Figure 1 : Quadrilateral cell with Gauss quadrature points
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[I-3. Particle to segment contact algorithm in 2D KPM

Consider a system of two bodies arbitrarily desigaeby slave body and
master bodyThe master surface is discretized by a set of mgstaicles
connected into piecewise linear segments, andl#vwe surface by a set of
slave particles. Every time step, the algorithmtfilsust predict the
accelerations, velocities, and displacements froqpli@t time integration
routine. The resulting displacements are then ugedetermine whether or
not contact has taken place.

The algorithm assumes that slave particles can beta¢ing the master
surface as shown iRigure 2 X, andXxs stand respectively for the spatial
coordinates of master and slave particles; whilandt, are the normal and
the tangential unit vectors of the master segrhent

Slave particle)

Figure 2 : Discrete contact surfaces

To ensure that the two surfaces do not interpemettiie contact force

applied to the penetrating slave particle to caitsehormal penetratiorgJ
is calculated as follows:

m,(J )%
f,(0) =0 < 1 (o,
¢ @)

wherelt is the time step size, arms(‘])is the mass of the slave partidle
On the tangential direction of the contact surfabe classical Coulomb
friction model is adopted in modeling friction bet@n slave body and master
body. The tangential force exerted by the mastdaseron a slave particle
Is evaluated as

) Ves()

fiw= —mir'(,uk fooy ol v

f st
[V (5)

t(J)
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where A friction coefficient on the contact interface and
J
fst __ms( )VTR(J)

tQ) —
At (6)

where Vr(J) Is the tangential component of the relative véloaf the
slave particlel with respect to the associated master segment.

The force vectors calculated above are the exadlrforte vectors for each
penetrating particle to satisfy the impenetrabildgndition and friction
condition at interface. With RKPM the exact nodaice is redistributed to a
non-local ‘fictitious force’. The fictitious forceector for the particld is
calculated as follows:

f_lzszNl(XJ) @

The contact subroutine called by the main program for contact problem can
be outlined as follows:

I Find the penetrated slave particles; generate araprcontaining
slave particles penetrations, information about gteated slave
particles and the corresponding master segment;

il. Compute normal and frictional forces and redisttdthem to the
particles;

iii. Calculate the incremental acceleration due to conhta
interactions;

iv. Update velocities and displacements taking intooaot the
contact interactions;
V. Return to the main program.

[l - RESULTS AND DISCUSSION

The simulation of Taylor bar impact and the metagjifog will be presented
in this section. The elasto-plastic material modathwisotropic strain
hardening is used for the material modelizatioalithe examples

[lI-1. Taylor bar impact

A cylindrical bar impacts a rigid surface. The dafathe problem and the
material parameters are definedTiables 1 and 2 respectively. Since the
problem is axially symmetric, axisymmetric formida of the governing
equations is used and only half of the cylindediscretized as shown in
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Figure 3. The results are compared with the solution obtainsitg the
commercial code LS-DYNAS3D.
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Figure 3 : Taylor bar impact:(a) Continuum domain(b) Discretizdomain

At the end of the simulation 88us) the results obtained by RKPM and LS-
DYNA3D are shown inTable 3 and the corresponding shapes of the bar at the
contact surface are shown kilgure 4. The time histories of the radius and the
height of the bar are shown respectivelyFigure 5andFigure 6. Almost the
same results are drawn by RKPM Q2, RKPM Q4 and YS¢B3D.

Table 1 : Data of the Taylor bar impact problem

Parameter| |Initial Simulation | Initial Initial Number | Time Friction
velocity | time radius height of step coef-
particles | size ficient
Value 227.0m/s| 80s 0.0032m | 0.0324m| 1071 5x10% | 0.0
(21x51)
Table 2 : Material parameters of the bar
Parameterr Young's Poisson’s Initial yield | Hardening | Mass density
modulus ration stress modulus
value 117Gpa 0.35 400Mpa 100Mpa 8930kg/m

Table 3 : Comparison of the radius and the height of thelipavarious
methods at the end of the simoiai=8Qus)

Solution Methods Radius Height
RKPM Q2 7.11 mm 21.59mm
RKPM Q4 7.06 mm 21.58 mm

LS-DYNA3D 7.06 mm 21.52 mm
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(a) RKPM Q4 (b) RKPM Q2 (c) LS-DYNA3D

Figure 4 : Impact of Taylor bar: deformed shape of the bathatend of the
simulation by various methods
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Figure 5 : Impact of Taylor bar: Time histories of the radnfsthe bar
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Figure 6 : Impact of Taylor bar: Time histories of the heighthe bar

[1I-2. Square block forging

The plane strain forging by rigid flat tools is caesed in this example. A
square block of 500mmx500mm is compressed by twa rflat tools
moving in opposite direction with constant veloatylOm/s. The simulation
time is 0.015s. The statement of the problem isvehim Figure 7. The
friction coefficient is chosen to bg=0.2. The material properties of the
workpiece, discretized by a set of 441 (21x21)iplad, are defined ifable

2. The evolution of the forging process is showfrigure 8.

Workpece

V=10m/ [&—— 500 —{ 300

| Die_|
> 1300

&
v

Figure 7 : Statement of the plane strain forging problem
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Diiniiiiivinioin A
(a) Initial configuration (b) 40% compression
<c I Cunin

(c) 60% compiens

Figure 8 : Plane strain forging process

[11-3. Wheel forging

This example aims to simulate the cold forging pssaaf a wheel. As shown
in Figure 9-b, a cylindrical slug is used to obtain a wheel drawf&igure 9-a.
The material parameters used for the simulation gaven in Table 4.
Because of the symmetry of the problem an axisymeiermulation is used
and only half of the domain is discretized with @8¥&30) particles. The
punch and the die, assumed to be rigid and fritdg®) are discretized by
piecewise linear segments to fit the geometry ef wheel. The punch is
moving downward with constant velocity of 10m/s letthe die is fixed. The
maximum stroke of the punch at the end of the satirh is 20mm.

Table 4: Material parameters of the wheel

Young's Poisson’s

) Stress-strain curve
modulus ratio

Mass density

p = 2700
kg/m®

E=71GPalv=03 | 0=57679001658+ ¢, ) **MPa

The finale stages of the deformation are showRigure 9- d and gsimilar
results are obtained using RKPM Q4 and RKPM Q2.
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Figure 9 : Cold forging simulation, statement and deformapoocess by
different integration schemes inFRK
(a) Raw slug, (b) Geometry of theelh) Initial configuration
(d) Final stage RKPM Q4, (e) Final sdgKPM Q2,

[lI-4. Comparison of the CPU times

For the three numerical exampl@sble 5 shows the CPU times using the
two integration methods. The computation was domegua Pentium (R) 4
CPU — 3.20GHZ with RAM 512Mo. The difference in thercentages of
reduction of the CPU time, by the Q2 scheme witpeet to the Q4 scheme
for these examples, is mostly due to the time cmesl by the contact
searching algorithm. It is seen that important otidn of the CPU time is

obtained by using Q2 scheme.
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Table 5 : Comparison of CPU Time

Numerical Integration CPU Reductionof CPU
Examples Scheme time time
Taylor bar' impact 83 igm:‘]ii: 47.98%
Block forglr?g 83 ﬁmgggz 46.89%
Wheel forging 83 12;1“:8(?; 47.91%

IV - CONCLUSION

The correctness of the computer implementation efgtarticle to segment
contact algorithm has been shown through numeegamples, the Taylor

bar impact and cold forging simulations. The Q2gnéion scheme has been
also found very efficient for faster computationtiwialmost the same
accuracy as the Q4. The effectiveness of the RKPMafge deformations

simulation is confirmed.
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